Loading...
Search for: rashedi--zahra
0.122 seconds

    Design and Manufacturing of Intelligent Speed Hump

    , M.Sc. Thesis Sharif University of Technology Rashedi, Mohammad (Author) ; Saadat Foumani, Mahmoud (Supervisor)
    Abstract
    The goal of using speed humps is to reduce the velocity of cars to allowable value. Reducing the speed more than necessary before arriving at the hump, causes losing kinetic energy whose compensation needs consuming more fuel. In fact, the total fuel consumption of vehicles is noticeable and it expresses the need for allowable speed definition to prevent wasting fuel. In this project, using different methods in engineering design and by defining allowable speed, an intelligent speed hump is designed and selected from different patterns which may remain protuberant or become like the road surface in level. The parts considered for this hump are selected simple to lower the cost of... 

    Sliding mode control of chaotic rayleigh-benard convection in maxwellian fluids

    , Article 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009, Singapore, 14 July 2009 through 17 July 2009 ; 2009 , Pages 1194-1199 ; 9781424428533 (ISBN) Rashedi, M ; Sadeghian, H ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    This paper presents an attempt to control the chaotic behavior of Rayleigh-Bénard convection system in weakly elastic fluids. In this article, a nonlinear model is presented which fundamentally refers to a model introduced by Khayat. The nonlinear model has chaotic behavior which is controlled by using sliding mode method. In the presence of uncertainty for some parameters of the model, a controller is designed to stabilize the dynamic of the system on the desired trajectory. Different simulation results are presented to demonstrate the effectiveness of the designed controller in tracking different desired trajectories. ©2009 IEEE  

    Low-velocity Impact Response of FML Beams with Considering Plasticity of Metal

    , M.Sc. Thesis Sharif University of Technology Rashedi, Hossein (Author) ; Koochakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In this thesis an analytical model is applied to the dynamic response of fiber-metal laminate beams subjected to low-velocity impact. By using quasi-static consider-tions, a static model is developed using first order shear deformation beam theory and minimum total potential energy. In the next step, this static model is applied to the one degree of freedom non-linear spring-mass system for developing a model to predict dynamic response of low-velocity impact with the inclusion of material plasticity. By new explicit and simple expression, load-deflection curve, velocity-deflection curve, force-time history and deflection-time history can be derived. By using this analytical approach... 

    Correlation between isothermal crystallization properties and slow crack growth resistance of polyethylene pipe materials

    , Article Polymer Testing ; Volume 80 , 2019 ; 01429418 (ISSN) Gholami, F ; Pircheraghi, G ; Rashedi, R ; Sepahi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, three PE100 polyethylene materials with fairly different short chain branch distributions were used to characterize the relation between thermal properties and creep test failure time. The samples were thermally characterized using isothermal and non-isothermal differential scanning calorimetry (DSC). The three resins showed different behavior after fitting on the Avrami equation. N-100J2 sample, in which short chain branches (SCBs) are located on longer molecule chains, has a lower chain mobility and higher crystallization time, while N-100J1 has the opposite crystallization properties. Also, these samples had different Avrami index, n. Microstructural evaluation of these... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    Correlation between rheological and mechanical properties of black PE100 compounds - effect of carbon black masterbatch

    , Article Express Polymer Letters ; Volume 11, Issue 8 , 2017 , Pages 622-634 ; 1788618X (ISSN) Pircheraghi, G ; Sarafpour, A ; Rashedi, R ; Afzali, K ; Adibfar, M ; Sharif University of Technology
    BME-PT and GTE  2017
    Abstract
    Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35-40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI) of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with... 

    Kinetic Investigation of the Degradation of Environmental Pollutant in the Presence of TiO2 Nanoparticle on Carbon Nanotube

    , M.Sc. Thesis Sharif University of Technology Rashedi, Zahra (Author) ; Gholami, Mohammad Reza (Supervisor) ; Rahman Setayesh, Shahrbanoo (Co-Advisor)
    Abstract
    The present work is based on the, synthesis and investigation of photocatalytic activity of TiO2, TiO2/MWCNT, ZnO and ZnO/MWCNT nanostructures. The nanostructures were prepared using multi-walled carbonnanotubes (MWCNT) as templates.The SEM images of TiO2 and ZnO nanoparticles and TiO2/MWCNT andZnO/MWCNT showed that nanosize TiO2 and ZnO particles homogeneously and densely supported on the surfaces of multiwall carbon nanotubes the photocatalytic activity of the TiO2, TiO2 /MWCNT, ZnO and ZnO/MWCNT was examined by the degradation of Basic Blue 41(BB41) under UV and Vis lights. The optimum conditions for degradation of BB41 on TiO2 where found to be: calcination temperature (450 °C), dye... 

    How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4-L5 level

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 224, Issue 3 , 2010 , Pages 487-501 ; 09544119 (ISSN) Rashedi, E ; Khalaf, K ; Nassajian, M. R ; Nasseroleslami, B ; Parnianpour, M ; Sharif University of Technology
    2010
    Abstract
    The human motor system is organized for execution of various motor tasks in a different and flexible manner. The kinetic redundancy in the human musculoskeletal system is a significant property by which the central nervous system achieves many complementary goals. An equilibrium-based biomechanical model of isometric three-dimensional exertions of trunk muscles has been developed. Following the definition and role of the uncontrolled manifold, the kinetic redundancy concept is explored in mathematical terms. The null space of the kinetically redundant system when a certain joint moment and/or stiffness are needed is derived and discussed. The aforementioned concepts have been illustrated,... 

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    A Survey on Searchable Symmetric Encryption Schemes

    , M.Sc. Thesis Sharif University of Technology Sajadieh, Zahra Sadat (Author) ; Khazaei, Shahram (Supervisor)
    Abstract
    Using “Searchable Encryption” enables us to encrypt the data, while preserving the possibility of running search queries. One of the most important applications of the mentioned is in Cloud Storage. As users do not trust the Cloud space, they are not inclined to store their data on the Could. The solution to this problem is of course, Cryptography. However, ordinary Cryptography methods, eliminate the data’s searchability. Hence, we need encryption schemes that code the data while retaining their searchability. So far, various schemes has been proposed that differ in their performance, security level, and usage. In this thesis, we aim to discuss and analyze these methods  

    Temporal Depth Imaging Based on Dispersion

    , M.Sc. Thesis Sharif University of Technology Behzadfar, Shiva (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this thesis, the aim is designing an optical temporal imaging system. In recent years, due to many applications, including the receipt of high-rate data by slow receivers and compensation of dispersion in telecommunication systems, researchers have considered the topic of temporal imaging. This field of research is based on dispersion, electro-optical modulators or time lenses and space-time theory. By modeling dispersion properties as a depth dimension and taking ideas from three-dimensional spatial imaging systems we intended to increase the temporal resolution and depth of focus of the structure. We also present a novel technique for multiplexing and demultiplexing telecommunication... 

    Time Domain Optical Signal Processing Based on the Duality Between Dispersion and Diffraction

    , M.Sc. Thesis Sharif University of Technology Eksiri, Fatemeh (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In the last decades, due to the growing demand of transferring information with high transmission rates, the complexity and development of telecommunication and optical systems is remarkable. Researchers around the world attempt to explore extraordinary potential of light to process information. In the mid-19th century, scientists discovered a mathematical symmetry between the spatial and temporal optics fields, which originated from the similarity of equations governing the paraxial diffraction of beams and the dispersion of narrow-band pulses known as space– time duality in scientific texts. This new approach provides more advanced and potent methods to temporal processing and... 

    Improving the Stability of an Urban Traffic Network with Limited Data by Using Percolation Theory and Dynamic Clustering

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Ehsan (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the most vital aspects of understanding the traffic phenomenon is scrutinizing the traffic transition status, such as the transition from free flow to congestion. The Percolation Theory is a renowned theory focusing on analyzing various network types to detect the critical zones, which are the zones including links that are important to control to improve stability. By calculating the quality indices of network links, the Percolation Theory can simulate the traffic percolation propagation in the network and determine possible critical zones for further analysis. Most studies in this field assume access to data of several traffic parameters for the entire transportation network, such... 

    Modification of Biomedical Imaging Methods in Short Wavelength Infrared Window

    , Ph.D. Dissertation Sharif University of Technology Hassan Abbasi (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In recent years, optical biomedical imaging techniques show great potential in noninvasive imaging. Although these methods have many advantages over other biomedical imaging methods (such as Computerized Tomography (CT), Magnetic Resonance Imaging (MRI) and etc.), these techniques confront with some problems such as optical scattering, light absorption and etc. For in vivo imaging, the short-wavelength infrared region (SWIR; 1,000–2,000 nm) provides several advantages over the visible and near-infrared regions: general lack of auto-fluorescence, low light absorption by blood and tissue, and reduced scattering. In this thesis we want to analyze the traditional IR imaging techniques and...