Loading...
Search for: razavi-haeri--a--a
0.142 seconds

    Cycle by cycle envelope detection and ask demodulation

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 113-117 ; 9781728115085 (ISBN) Razavi Haeri, A. A ; Safarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In modern wireless near-filed power and data telemetry systems such as Implantable Medical Devices (IMD), a data rate of several Mbps is required, while the power carrier frequency is limited to few MHz. Therefore, bit rate is comparable to carrier frequency, and the modulated power carrier signal has amplitude, frequency, or phase variation in every cycle. In this paper a very fast amplitude shift keying (ASK) demodulator circuit is presented. The proposed demodulator is able to demodulate a cycle by cycle ASK modulated signal, and a data-rate-to-carrier (DRC) ratio of 100% is achievable. The circuit extracts the clock by limiting the incoming ASK signal. Cycle by cycle demodulation is done... 

    A cycle by cycle FSK demodulator with high sensitivity of 1% frequency modulation index for implantable medical devices

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 69, Issue 11 , 2022 , Pages 4682-4690 ; 15498328 (ISSN) Razavi Haeri, A. A ; Safarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a cycle by cycle Frequency Shift Keying (FSK) demodulator, able to demodulate a FSK signal with 1% frequency modulation index (MI), in a single cycle. Based on the proposed demodulation scheme, a high rate data transmission link can be established through a high-Q inductive coupling link, breaking the basic tradeoff between the power transfer efficiency (PTE) and data rate in single carrier wireless power and data transfer systems. Designed and simulated with 0.18μ m CMOS process, the proposed FSK demodulator, detects successfully a 5Mbps data with a carrier frequency of 5MHz. A test chip is fabricated in 180nm CMOS technology. Measurement results shows that the... 

    Analysis and design of power harvesting circuits for ultra-low power applications

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 64, Issue 2 , 2017 , Pages 471-479 ; 15498328 (ISSN) Razavi Haeri, A. A ; Karkani, M. G ; Sharifkhani, M ; Kamarei, M ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper presents an analytical model for power harvester circuits used in Ultra-low power applications. Assuming that the MOS devices of the circuit fully operate in the Sub-threshold regime in both forward and reverse regions, closed-form equations for important properties of the rectifier circuit such as output voltage, efficiency and input resistance are derived. The model includes the effect of the compensation voltage on the circuit behavior. There is a good agreement between the simulation results and the model. In addition, the contour plots needed to simultaneously optimize the matching network and the rectifier circuit are derived by the resulting equations. A 50-Stage rectifier... 

    LED nanosecond pulsed imaging for electrohydrodynamic liquid breakup of a modified nozzle

    , Article Experimental Thermal and Fluid Science ; Volume 98 , 2018 , Pages 546-556 ; 08941777 (ISSN) Kebriaee, A ; Morad, M. R ; Rajabi, A ; Nasiri, H ; Pejman, S. R ; Razavi Haeri, S. A. A ; Javadi, E ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    The behavior of an electrified liquid jet breakup and modes of disintegration were investigated at different flow rates and voltages. The current phenomenology belongs to a new injector introduced recently by Morad et al. (2016). This injector has proven to highly extend the stability and flow rate of electrospray particularly in the Taylor cone-jet mode. The experimental investigation was performed using a high-power light-emitting diode (LED) illumination as the light source. The light source was developed to operate in the pulsing condition when synchronized with a digital camera and was particularly designed to function properly in the presence of high electromagnetic interference (EMI).... 

    Synchronizing different chaotic systems using active sliding mode control

    , Article Chaos, Solitons and Fractals ; Volume 31, Issue 1 , 2007 , Pages 119-129 ; 09600779 (ISSN) Haeri, M ; Emadzadeh, A. A ; Sharif University of Technology
    2007
    Abstract
    An active sliding mode controller is designed to synchronize three pairs of different chaotic systems (Lorenz-Chen, Chen-Lü, and Lü-Lorenz) in drive-response structure. It is assumed that the system parameters are known. The closed loop error dynamics depend on the linear part of the response systems and parameters of the controller. Therefore, the synchronization rate can be adjusted through these parameters. Analysis of the stability for the proposed method is derived based on the Lyapunov stability theorem. Finally, numerical results are presented to show the effectiveness of the proposed control technique. © 2005 Elsevier Ltd. All rights reserved  

    Comparative study of various methods for synchronizing two different chaotic systems

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 356, Issue 1 , 2006 , Pages 59-64 ; 03759601 (ISSN) Haeri, M ; Emadzadeh, A. A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    Three different controllers, i.e., active controller, nonlinear controller, and active sliding mode controller are designed and examined for the synchronization of pairs of three different chaotic systems, i.e., Chen, Lü, and Lorenz. The synchronizing methods are then compared from various point of views including synchronizing error variance, convergence time, control effort, maximum and minimum values of the control signal. Our results indicate that the nonlinear controller synchronizes pairs of the different chaotic systems generally better than two other controllers according to the defined criteria. © 2006 Elsevier B.V. All rights reserved  

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Performance of optical bit rate limiters with pre- or postoptical amplification

    , Article Journal of Lightwave Technology ; Volume 20, Issue 10 , 2002 , Pages 1797-1804 ; 07338724 (ISSN) Razavi, M ; Salehi, J. A ; Sharif University of Technology
    2002
    Abstract
    A communication system incorporating a bit rate limiter (BRL) device is analyzed using recently proposed statistical models for power splitters and combiners. We also consider the possible optical attenuation and amplification before and after BRL device. We obtain the total output moment generating function (MGF) of the number of photoelectrons at the receiver end for two possible synchronization procedures. Furthermore, we use saddle-point approximation method to evaluate the system performance considering the effects of shot-noise, thermal noise, and source extinction ratio  

    Temporal/spatial fiber-optic CDMA systems with post- and pre-optical amplification

    , Article IEEE Transactions on Communications ; Volume 50, Issue 10 , 2002 , Pages 1688-1695 ; 00906778 (ISSN) Razavi, M ; Salehi, J. A ; Sharif University of Technology
    2002
    Abstract
    In this paper, we present a thorough analysis based on photon-counting techniques on temporal/spatial fiber-optic code-division multiple-access systems incorporating both post- and pre-optical amplifiers. In this analysis, we consider the effect of shot noise, thermal noise, and source extinction on system bit-error rate. Our results can be used to estimate the maximum tolerable amount of quantum fluctuations in the received signal  

    Statistical analysis of fiber-optic CDMA communication systems - Part II: Incorporating multiple optical amplifiers

    , Article Journal of Lightwave Technology ; Volume 20, Issue 8 , 2002 , Pages 1317-1328 ; 07338724 (ISSN) Razavi, M ; Salehi, J. A ; Sharif University of Technology
    2002
    Abstract
    In this paper, we study and elaborate on the architectural consideration of using multiple optical amplifiers in an all-optical fiber-optic code-division multiple-access (FO-CDMA) network. Our study and considerations are based on obtaining the statistical characteristic functions for photon-counts of a string of output pulses that constitutes the address code in a FO-CDMA network. Optical orthogonal codes (OOCs) with minimum auto- and cross correlation are employed as the address or signature sequence codes. Our analysis is based on chip-synchronous interference only, which provides an upper bound on the system performance. Shot noise, thermal noise, and extinction ratio are considered in... 

    Statistical analysis of fiber-optic CDMA communication systems - Part I: Device modeling

    , Article Journal of Lightwave Technology ; Volume 20, Issue 8 , 2002 , Pages 1304-1316 ; 07338724 (ISSN) Razavi, M ; Salehi, J. A ; Sharif University of Technology
    2002
    Abstract
    In this paper, we present a new methodology for analysis of all-optical fiber-optic code-division multiple-access (FO-CDMA) networks. In this analysis, we propose statistical models, based on photon-counting techniques, for some basic elements of the network, such as splitters, combiners, star couplers, and FO-CDMA passive encoders/decoders. By following the statistical variation of the photon-count of the string of pulses that constitutes the address sequence in an FO-CDMA network, we will be able to reveal the quantum-limited optical signal-to-noise ratio (OSNR) required at the transmitter output to meet the performance limits. Moreover, considering receiver thermal noise and source... 

    The behavior of a limy cemented gravely sand under static loading-case study of Tehran alluvium

    , Article Electronic Journal of Geotechnical Engineering ; Volume 13 H , 2008 ; 10893032 (ISSN) Haeri, S. M ; Seiphoori, A ; Rahmati, A ; Sharif University of Technology
    2008
    Abstract
    The majority of the city of Tehran, Iran has been developed on cemented coarse-grained alluvium. In order to understand the mechanical behavior of this soil, a series of triaxial compression tests (CD, CU) were performed on uncemented and artificially cemented samples. Hydrated lime was used as the cementation agent for sample preparation to model the Tehran cemented deposit. The tests were performed on artificially cemented samples after an appropriate curing time. The effect of confining pressure, cement content and fine content is investigated in this research. The tests results show that peak shear strength is followed by strain softening for all cemented samples. Shear strength... 

    Evaluation of using different nanomaterials to stabilize the collapsible loessial soil

    , Article International Journal of Civil Engineering ; Volume 19, Issue 5 , 2021 , Pages 583-594 ; 17350522 (ISSN) Haeri, S.M ; Valishzadeh, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Construction over problematic soils is a common problem in many parts of the world, and one of the effective procedures to tackle this problem is soil stabilization. Accordingly, the current study provides the finding of a laboratory investigation into the effect of three kinds of nanomaterials, including nano-silica (NS), nano-clay (NC) and nano-calcium carbonate (NCC) on the properties of a loessial collapsible soil. To accomplish this issue, reconstituted samples of the stabilized loessial soil were prepared for unconfined compression and consolidation tests. The results illustrated that an insignificant amount of nanomaterials (less than 1% of the total dry weight of the soil when is... 

    Binary and ternary blends of high-density polyethylene with poly(ethylene terephthalate) and polystyrene based on recycled materials

    , Article Polymers for Advanced Technologies ; Volume 22, Issue 5 , 2011 , Pages 690-702 ; 10427147 (ISSN) Razavi, S ; Shojaei, A ; Bagheri, R ; Sharif University of Technology
    2011
    Abstract
    Binary blends of recycled high-density polyethylene (R-HDPE) with poly(ethylene terephthalate) (R-PET) and recycled polystyrene (R-PS), as well as the ternary blends, i.e. R-HDPE/R-PET/R-PS, with varying amounts of the constituents were prepared by twin screw extruder. The mechanical, rheological, thermal, and scanning electron microscopy (SEM) analyses were utilized to characterize the samples. The results revealed that both R-HDPE/R-PET and R-HDPE/R-PS blends show phase inversion but at different compositions. The R-PET was found to have much higher influence on the properties enhancement of the R-HDPE compared to R-PS, but at the phase inverted situation, a significant loss in the tensile... 

    Optimization-based gravity-assisted calibration and axis alignment of 9-degrees of freedom inertial measurement unit without external equipment

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 234, Issue 2 , 2020 , Pages 192-207 Razavi, H ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Applicable in numerous fields, low-cost micro-electromechanical system inertial measurement units often require on-sight calibration by the end user due to the existence of systematic errors. A 9-degrees of freedom inertial measurement unit comprises a tri-axis accelerometer, a tri-axis gyroscope, and a tri-axis magnetometer. Various proposed multi-position calibration methods can calibrate tri-axis accelerometers and magnetometers to a degree. Yet the full calibration of a tri-axis gyroscope and axis alignment of all the sensors still often requires equipment such as a rate table to generate a priori known angular velocities and attitudes or relies on the disturbance-prone magnetometer... 

    Towards real-time partially self-calibrating pedestrian navigation with an inertial sensor array

    , Article IEEE Sensors Journal ; Volume 20, Issue 12 , 2020 , Pages 6634-6641 Razavi, H ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Inspired by algorithms utilized in inertial navigation, an inertial motion capturing algorithm capable of position and heading estimation is introduced. The fusion algorithm is capable of real-time link geometry estimation, which allows for the imposition of biomechanical constraints without a priori knowledge regarding sensor placements. Furthermore, the algorithm estimates gyroscope and accelerometer bias, scaling, and non-orthogonality parameters in real-time. The stationary phases of the links, during which pseudo-measurements such as zero velocity or heading stabilization updates are applied, are detected using optically trained neural networks with buffered accelerometer and gyroscope... 

    Inertial motion capture accuracy improvement by kalman smoothing and dynamic networks

    , Article IEEE Sensors Journal ; Volume 21, Issue 3 , 2021 , Pages 3722-3729 ; 1530437X (ISSN) Razavi, H ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Localization-capable inertial motion capture algorithms rely on zero-velocity updates (ZUPT), usually as measurements in a Kalman filtering scheme, for position and attitude error control. As ZUPTs are only applicable during the static phases a link goes through, estimation errors grow during dynamic ones. This error growth may somewhat be mitigated by imposing biomechanical constraints in multi-sensor systems. Error reduction is also possible by optimization-based methods that incorporate the dynamic and static constraints governing the system behavior over a period of time (e.g. the dynamic network algorithm); when this period includes multiple static phases for a link, its estimation... 

    Robust H∞ hybrid observer-controller design with application to attitude control of 2-DOF helicopter

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 4A , 2014 ; ISBN: 9780791846476 Razavi, H ; Merat, K ; Salarieh, H ; Alasty, A ; Meghdari, A ; Sharif University of Technology
    2014
    Abstract
    In this paper, a class of uncertain piecewise affine (PWA) systems, subject to system and measurement external disturbances are studied. The uncertainties are assumed to be norm bounded and the external disturbance signals belong to the L2 space. The problem of optimizing the system response in the H?sense, by means of a piecewise affine observer-controller, is formulated as an optimization problem subject to a number of constraints in the form of matrix inequalities. The derived constraints are obtained by considering a partially piecewise quadratic Lyapunov function in combination with the general conditions for H?stability. Then the uncertain PWA approximation of the nonlinear attitude... 

    Observer based minimum variance control of uncertain piecewise affine systems subject to additive noise

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 19 , 2016 , Pages 153-167 ; 1751570X (ISSN) Razavi, H ; Merat, K ; Salarieh, H ; Alasty, A ; Meghdari, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a class of uncertain piecewise affine (PWA) systems, subject to system and measurement additive noises is studied. The additive noise signals considered here do not vanish at the equilibrium and the uncertainties are norm bounded. The problem of minimizing the bound on the variance of the steady response of uncertain PWA systems, by means of a hybrid observer-controller, is formulated as an optimization problem subject to a number of constraints in the form of matrix inequalities. The derived constraints are obtained by considering a piecewise quadratic Lyapunov function in combination with the general stability conditions regarding the existence of an upper stochastic bound... 

    Constitutive modelling of cemented gravelly sands

    , Article Geomechanics and Geoengineering ; Volume 4, Issue 2 , 2009 , Pages 123-139 ; 17486025 (ISSN) Haeri, S. M ; Hamidi, A ; Sharif University of Technology
    2009
    Abstract
    A constitutive model is developed for a cemented gravelly sand. The model is based on the separation of the cemented soil to the uncemented part and cemented bonds and combining the mechanical behaviour of each part using consistency and energy equilibrium equations. The uncemented part was modelled using the Pastor et al. (1985) model for sands. A new model was developed and proposed for the cemented bonds. Combination of these parts resulted in the modelling of cemented soil behaviour with a very good consistency both in drained and undrained conditions. The pore pressure in undrained conditions and the volumetric strains in the drained state were also modelled successfully using this...