Loading...
Search for: reza-alizadeh--mohsen
0.166 seconds

    An Analytical Solution for the Polymeric Liner Collapse in Hyperbaric type IV Hydrogen Storage Vessels

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mostafa (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Type IV high pressure vessels are composite vessels with a polymeric liner, which are the best choice for storing hydrogen in hydrogen vehicles. The defect of these vessels is the penetration of light hydrogen molecules in the polymeric liner and the composite part. When depressurization the vessel, these molecules cannot release from the polymeric liner and the composite part according to the emptying rate of the vessel. Thus, concentration of the hydrogen molecules in the polymeric liner becomes more than inside the vessel which leads to a pressure difference between the two sides of the polymeric liner that causes the liner collapse. In this research, the partial differential equation for... 

    Investigation into the Effect of Adding Sr on Microstructure, Mechanical Properties and Biodegradability Behavior of Biodegradable Mg-Zn-Sr Alloys

    , M.Sc. Thesis Sharif University of Technology Gerashi, Ehsan (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Biodegradable implants are new generation of implants that require no secondary surgery for their removal. Mg exhibits a great potential to be used as the biodegradable implant. However, mechanical properties and biocorrosion behavior of Mg are not suitable for being used as biodegradable implants. In this study, effects of Sr additions, heat treatments (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biocorrosion behavior of Mg-4Zn-xSr alloys, and also the effect of hydrothermal coating on the biocorrosion behavior of Mg-4Zn-0.3Sr alloy were investigated. Potentiodynamic polarization and hydrogen evolution methods were used to... 

    Investigating the Effects of Heat Treatment and Y Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Bio-Degradable Mg–Si Alloys

    , M.Sc. Thesis Sharif University of Technology Jamalpour, Mohammad (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    In Mg–Si alloys, both primary and eutectic Mg2Si particles normally appear with sharp edges, which can lead to weak mechanical properties as the result of stress concentration at the sharp corners of these brittle particles. On the other hand, the morphology, size and distribution of Mg2Si particles affect corrosion behavior of Mg–Si alloys. Thus, it would be of great importance to modify the morphology of these particles. In this study, microstructure modification mechanisms after 0.5 wt% Y addition and heat treatment (HT) at 420 ◦C for 24 h are comprehensively studied in hypo-eutectic Mg–1Si and hyper-eutectic Mg–2Si alloys. Microstructural observations were performed using optical and... 

    Fabrication and Study of Mechanical Behavior of in Situ Microfibrillar- Reinforced Composites of Polypropylene/Recycled Poly (Ethylene Terephthalate)Toughened with Rubber Particles

    , M.Sc. Thesis Sharif University of Technology Motahari, Tayebeh (Author) ; Bagheri, Reza (Supervisor) ; Alizadeh, Reza (Supervisor)
    Abstract
    The use of polymers is increasing day by day due to low density, reasonable price and ability to produce different products. On the other hand, the accumulation of polymer wastes in nature is one of the environmental concerns in today's world, which is mainly due to the widespread use of polymers in the packaging industry and disposable applications. In order to solve this problem, recycling is recommended as the most appropriate and economical solution. Because in addition to consuming polymer waste, it also saves energy and reduces carbon footprint.Polyethylene terephthalate (PET) is one of the polymeric materials which; It has a special place in the packaging industry and is widely used... 

    A Concurrent Multiscale Modelling of Crack Propagation with the Use of Extended Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Omid (Author) ; khoei, Amir Reza (Supervisor)
    Abstract
    Crack propagation problem is one of the most important problems that are being investigated for a long time. Plenty of various approaches have been utilized to simulate the crack propagation phenomenon. Continuum based methods like Finite element (FE), Extended Finite element (XFEM), have been successfully applied, and the obtained results are valid in macro scale. However, the stress filed near crack tip in FEM modeling of crack, is not exquisite enough due to inability of continuum based approaches in revealing atomistic aspects of the material.
    In order to gather efficiency of the continuum based domain and the accuracy of the atomistic based domain, Multiscale methods are employed.... 

    Ideological Orientations in TOEFL iBT: A Critical Language Testing Perspective Masked Agendas!

    , M.Sc. Thesis Sharif University of Technology Reza Alizadeh, Mohsen (Author) ; Salehi, Mohammad (Supervisor)
    Abstract
    It is generally believed that the only utility of tests as a critical instrument is to be at the service of educational institutions. To broadly consider their different usefulness, tests can serve other purposes like focusing on the ethical and moral issues. As it is called Critical Language Testing, tests are not reliable instruments and they have the capacity of being used not only in educational, but also in political contexts. This philosophy has not been brought into perspective, and, as a result, the literature deserves more comprehensive attention. This study, guided by the principles of Grounded Theory and Qualitative research design, pursued three purposes: To investigate the... 

    Synthesis and Characterization of 2-dimensional Carbides (MXenes), and Fabrication of 3D Printed MXene-Polylactic Acid Nanocomposites

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Hamid Reza (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    A decade after discovery of graphene, the unique properties and characteristics of two-dimensional materials, particularly an emerging family of carbides and nitrides (MXenes), have attracted the attention of researchers. MXenes are two-dimensional structures of two or more layers of transition metals, with interstitial carbon and/or nitrogen atoms, with exceptional properties such as high specific surface area, excellent elastic modulus, metallic conductivity, and various termination groups. These properties can be altered by various factors, including chemical composition and synthesis processes, and any changes in these factors significantly affect the properties of MXene sheets. In this... 

    Improving Mechanical and Biological Behavior of Mg-2ag Alloy: Effects of Y Addition, Heat Treatment and Coating

    , M.Sc. Thesis Sharif University of Technology Mohammadi Zerankeshi, Meysam (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Biodegradable Mg-Ag alloys are promising implants for bone tissue regeneration due to their unique ability to reduce inflammation and infection after implantation with the presence of silver. However, their biological performance, including biodegradability, needs further improvement. In this regard, the effects of adding yttrium element, solution heat treatment and coating on the microstructure, biodegradability behavior, mechanical properties and biological characteristics of a cast Mg-2Ag alloy were studied. Addition of 1 wt% of yttrium caused grain refinement in the microstructure and solid solution heat treatment led to a significant decrease in the volume fraction of secondary phases.... 

    Fabrication and Characterization of Polylactic Acid-Mg Composites by 3d Printing Method for Biomedical Applications

    , M.Sc. Thesis Sharif University of Technology Bakhshi, Rasoul (Author) ; Alizadeh, Reza (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    Polylactic acid (PLA) is considered as a great option to be employed as 3D porous scaffold in tissue engineering applications owing to its excellent biocompatibility and processability. However, relatively weak mechanical properties, low degradation rate and inappropriate biodegradability limit its extensive usage. In order to overcome the mentioned challenges, micrometric magnesium (Mg) particles were incorporated into the PLA matrix by the fused deposition modeling (FDM) technique. The effects of various Mg contents (i.e., 2, 4, 6, 8 and 10 wt%) on the mechanical, thermal, structural, wettability, rheological, biodegradability characteristics and cellular behavior of the 3D porous PLA-Mg... 

    Investigation of Mechanical, Biological, and Degradation Properties of 3D-Printed Bioactive Glass Composite Scaffold Using FDM

    , M.Sc. Thesis Sharif University of Technology Hosseini Nikoo, Mohammad Mahdi (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Three-dimensional biological scaffolds, as an emerging strategy in bone tissue engineering, enable the treatment of bone injuries without the need for grafting and implantation. The selection of suitable materials and fabrication methods for producing bone scaffolds is one of the key challenges in bone tissue engineering. This research focuses on the production of poly-lactic acid-bioactive glass S58 composite scaffolds using 3D printing. A solvent-based method was employed to produce poly-lactic acid composites containing bioactive glass particles (0.5, 1, and 1.5 weight percent). The composites were printed after the extrusion process and filament production for evaluating microstructural,... 

    Investigating the Effects of Ca Additions and Thermomechanical Processing on the Microstructure, Mechanical Properties and Degradation Behavior of Mg-Y Based Alloys

    , M.Sc. Thesis Sharif University of Technology Jorati, Sina (Author) ; Alizadeh, Reza (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    In this study, the effects of calcium addition and T4 heat treatment at 450°C for 36 hours on the microstructure, mechanical properties, and corrosion resistance of the Mg-2.5Y alloy were comprehensively investigated. The studied alloys included the base Mg-2.5Y alloy and the Mg-2.5Y-0.2Ca alloy, which were prepared through casting. Microstructural analysis using optical microscopy, scanning electron microscopy, and X-ray diffraction revealed that the addition of 0.2 wt% calcium significantly reduced the grain size from 732±34 µm in the base alloy to 475±12 µm. After heat treatment, the dissolution of dendritic branches and secondary phases (Mg24Y5 and Mg2Ca) resulted in finer, more equiaxed... 

    Investigating the Microstructure, Mechanical Properties and Biodegradation Behaviour of Mg‒1Zn‒0.2Ag/MgO Composites

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad (Author) ; Alizadeh, Reza (Supervisor) ; Aashouri, Hossein (Supervisor)
    Abstract
    Magnesium and its alloys have gained a lot of interest recently in the field of biodegradable implants, particularly in the field of orthopedics, mainly due to their excellent compatibility, low density and similarity of their mechanical properties with the human bone. However, the main weakness of magnesium for such applications is that it corrodes faster than the time required for complete healing of the tissue. Different properties of Mg can be improved by making composites. In this research, 1% and 2% of MgO microparticles were added to the Mg-1Zn-0.2Ag alloy. These composites were made by the stir casting technique, and after that, the samples' microstructure, mechanical... 

    A Combined Molecular Dynamics-Coarse Graining Technique for Modeling the Mechanical Behavior of Crystalline Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Mohammad Reza, Kimia (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Supervisor)
    Abstract
    In the area of material studies, the atom structure models are the basis of all simulations and methods. With improvements in computers power, these models have become more consistent with experimental results. New theoretical methods combined with supercomputers assist to an understanding with detail and accuracy of material behavior at the atomic scale that leads to develop of the Computational Materials Science. Recently, developments in fields such as quantum mechanics, statistical physics, solid-state physics, quantum chemistry, computer science and graphics, allowed for faster computing which leads a powerful tool for material calculations and designs. New computer applications allow... 

    Investigating the Microstructure, Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Li-Zn Alloys

    , M.Sc. Thesis Sharif University of Technology Zohrevand, Mohammad (Author) ; Alizadeh, Reza (Supervisor) ; Tavakoli, Rouhollah (Co-Supervisor)
    Abstract
    Due to its biodegradability, magnesium can be a good option for making degradable medical implants that disappear in the body over time and thus there would be no need for secondary surgery. However, high rate of corrosion of magnesium in the body environment and low formability at room temperature are the two main problems of magnesium, which lead to rapid destruction of the sample in a short time and serious problems. For these reasons, much research is currently being done to improve the corrosion behavior and mechanical properties of magnesium alloys through microstructure modification. In this regard, special attention has been paid to Mg-Li alloys as the lightest magnesium alloys. The... 

    Investigating the Effects of Heat Treatment and Ag Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of

    , M.Sc. Thesis Sharif University of Technology Saadatmand Hashemi, Shakiba (Author) ; Alizadeh, Reza (Supervisor) ; Ashuri, Hossein (Supervisor)
    Abstract
    Magnesium and its alloys are among the new degradable implants due to their characteristics such as biodegradability, low density, elastic modulus close to bone, and biocompatibility, which have received much attention from researchers. However, in most biological applications, the insufficient corrosion resistance of this alloy causes the accumulation of hydrogen gas around the implant, the loss of mechanical strength and its destruction before the completion of the treatment period. In this research, magnesium base alloys Mg–4Sn, Mg–4Sn–0.2Ag and Mg–4Sn–1Ag are investigated to improve mechanical strength and corrosion resistance. Finally, after casting and alloying, microstructural,... 

    Experimental and Analytical Investigation of Elastic-Plastic Behavior of Glass Fiber Reinforced Polymer Composites

    , M.Sc. Thesis Sharif University of Technology Sajadi, Banafshe (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this thesis, we aim to study the elastic-plastic behavior of short fiber reinforced composites experimentally and analytically. The experimental investigation is applied to glass fiber-polypropylene composites (PP/GF). The samples are produced by injection process with maximum temperature of 190C. Fibers are randomly oriented in this procedure of fabrication. The samples are tested in tension, and the mechanical strength is measured by changes in fiber content. The Young's modulus is also investigated in these experiments.Also in this thesis, an analytical model for calculation of Young’s modulus of fiber reinforced composite materials is proposed. In this analysis a displacement field is... 

    Investigating Microstructure, Mechanical Properties and Corrosion Resistance of New Biodegradable Mg-2Zn-xAg-yCu (x=0-0.6,y=0-0.1) Alloys

    , M.Sc. Thesis Sharif University of Technology Asadollahi Avilagh, Mohammad (Author) ; Alizadeh, Reza (Supervisor) ; Sadrnezhaad, Khatiboleslam (Co-Supervisor)
    Abstract
    Magnesium has recently been considered as a biocompatible metal with mechanical properties close to bone for use in biological applications. On the other hand, the degradation properties of this metal in the physiological environment have made this metal superior to permanent biomaterials such as stainless steel, titanium alloys. The most important challenge of using this alkaline earth metal in the body environment is its rapid corrosion, which causes problems such as alkaline toxicity and loss of supporting role before complete tissue repair. In this study, Mg-Zn-Ag-Cu alloys were manufactured to improve mechanical strength, corrosion resistance and antibacterial properties. Finally, after... 

    Removal of toxic heavy metal ions from waste water by functionalized magnetic core–zeolitic shell nanocomposites as adsorbents

    , Article Environmental Science and Pollution Research ; Volume 20, Issue 6 , June , 2013 , pp. 3900-3909 ; 1614-7499 Padervand, M. (Mohsen) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    2013
    Abstract
    Functionalized magnetic core–zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb2+ and Cd2+) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic,... 

    Fabrication and Characterization of Porous Carbon-Graphene Composite as an Absorbent for Industrial Pollutants

    , Ph.D. Dissertation Sharif University of Technology Alizadeh, Omid (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Pourjavadi, Ali (Supervisor) ; Bahramian, Ahmad Reza (Co-Supervisor)
    Abstract
    The amount of fresh water suitable for various uses is decreasing day by day. This may be due to evaporation or contamination of water or such. Heavy metal cations, dyes, oils and solvents are the most important substances that contaminate water. There are various ways to remove these contaminants, one of which is the absorption of these substances by suitable absorbents. Carbon compounds have attracted much attention among all the absorbents used so far. The aim of this study is to produce carbon aerogels from an economic and modify its structure and properties by adding graphene nanosheets. In this study, Novalak-graphene oxide (GO) gel was fabricated using solvent-saturated vapor... 

    Statistical Analysis and Experimental Design for Screening of Carbon Dioxide Sequestration in Brine Aquifers

    , M.Sc. Thesis Sharif University of Technology Farasat, Amir (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    It is believed that the carbon dioxide emissions are likely to be the dominant drivers of climate change over the coming century. Geological sequestration in saline aquifers is a potential technology for mitigating carbon dioxide emission in atmosphere. In this study, computer simulation is combined with experimental design to perform sensitivity analysis and estimation of carbon dioxide sequestration in saline aquifers. For this purpose, horizontal permeability, vertical to horizontal permeability ratio, porosity, depth, pressure gradient, temperature gradient, water salinity, formation thickness, diffusivity coefficient, dip, irreducible water saturation, water Corey exponent, gas Corey...