Loading...
Search for: riazi--z
0.208 seconds

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Electron heating enhancement by frequency-chirped laser pulses

    , Article Journal of Applied Physics ; Vol. 116, issue. 10 , 2014 Yazdani, E ; Sadighi-Bonabi, R ; Afarideh, H ; Riazi, Z ; Hora, H ; Sharif University of Technology
    2014
    Abstract
    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2.... 

    Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    , Article Physical Review Special Topics - Accelerators and Beams ; Volume 15, Issue 2 , 2012 ; 10984402 (ISSN) Nikzad, L ; Sadighi Bonabi, R ; Riazi, Z ; Mohammadi, M ; Heydarian, F ; Sharif University of Technology
    2012
    Abstract
    Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a... 

    Alumina-copper eutectic bond strength: contribution of preoxidation, cuprous oxides particles and pores

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 263-268 ; 10263098 (ISSN) Ghasemi, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles and pores on the mechanical properties and micro structure of an alumina-copper eutectic bond have been investigated. The furnace, atmosphere in the. first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the. furnace atmosphere was the. same as the first stage except that the cooling interval was between 900-100l°C and the hydrogen gas was injected into the. furnace, atmosphere. Finally, in the last stage, a vacuum furnace with 5 × 10-8 atra pressure was chosen for the bonding procedure. The peel strength of first stage specimens shows that a, cupric oxide layer with 320 ± 25 ran... 

    Roles of preoxidation, Cu2O particles, and interface pores on the strength of eutectically bonded Cu/α-Al2O3

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1098-1102 ; 02641275 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of CuO layer thickness, Cu2O particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage except for the cooling interval between 900 and 1000 °C, the hydrogen gas was injected into furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10-8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that CuO layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3 kg/cm) in joint... 

    Single peak analysis of proton induced prompt gamma counts

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 475 , 2020 , Pages 63-70 Saheli, F ; Vosoughi, N ; Riazi, Z ; Shahabinejad, H ; Rasouli, F. S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Online elemental analysis of irradiated tissues is an important challenge in proton therapy for estimating the depth of the Bragg peak and monitoring the healing process. In the present study, the prompt gamma (PG) spectra of the most abundant elements of human tissues were obtained for two different incident protons of 30 MeV and 120 MeV using the Geant4 toolkit. Train phantoms were defined to study the elemental analysis of the tissue from PG spectra. It was found that the intensities of 7.12 and 3.91 MeV PG depend on the mass of 16O and 20Ca elements for both proton energies, respectively. Furthermore, multi-variable linear functions were presented for overlapping peaks like 4.44 and 2.31... 

    Alumina - copper eutectic bond strength: Contribution of preoxidation, cuprous oxides particles, and pores

    , Article 16th International Federation for Heat Treatment and Surface Engineering Congress, Brisbane, QLD, 30 October 2007 through 2 November 2007 ; Volume 32 , 2007 , Pages 90-97 ; 08832900 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage unless that in cooling between 900-1000 °C, the hydrogen gas was purged in furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10 -8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that cupric oxide layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3... 

    Quantitative Elemental Analysis Using Whole Spectral Information (with GA and MLR Methods) of Proton Induced Prompt Gamma-Rays Simulated Using Geant4 Toolkit

    , Article Frontiers in Biomedical Technologies ; Volume 10, Issue 1 , 2023 , Pages 78-87 ; 23455829 (ISSN) Saheli, F ; Vosoughi, N ; Riazi, Z ; Rasouli, F. S ; Jowkar, A ; Sharif University of Technology
    Tehran University of Medical Sciences  2023
    Abstract
    Purpose: Online determination of the elemental composition of tissues near the Bragg peak is a challenge in proton therapy related studies. In the present work, an analysis method based on the whole spectral information is presented for the quantitative determination of the elemental composition (weight %) of an irradiated target from its emitted Prompt Gamma (PG) spectrum. Materials and Methods: To address this issue, four test phantoms with different weights (%) of 12C, 16O, 20Ca, and 14N elements were considered. The simulated PG spectra were recorded using 3 × 3 inch NaI detectors. A library consisting of the spectra of single-element phantoms as well as the spectra of test-irradiated... 

    Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition

    , Article Laser and Particle Beams ; Volume 28, Issue 1 , 2010 , Pages 101-107 ; 02630346 (ISSN) Sadighi Bonabi, R ; Hora, H ; Riazi, Z ; Yazdani, E ; Sadighi, S. K ; Sharif University of Technology
    2010
    Abstract
    Here we report on the production of highly directed ion blocks by plasma interaction of ultraviolet wavelength light produced from a KrF laser. This may support the requirement to produce a fast ignition deuterium-tritium fusion at densities not much higher than the solid state by a single shot petawatt-picoseconds ultraviolet laser pulse. Using double Rayleigh initial density profiles, we are studying numerically how the nonlinear force necessary to accelerate plasma blocks may reach the highest possible thickness. Propagation of plasma blocks and the volumetric hot electrons can be shown in detail. Results of computations for wavelengths of two lasers are compared, which show that the... 

    Laminar premixed V-shaped flame response to velocity and equivalence ratio perturbations: Investigation on kinematic response of flame

    , Article Scientia Iranica ; Volume 18, Issue 4 B , 2011 , Pages 913-922 ; 10263098 (ISSN) Riazi, R ; Farshchi, M ; Sharif University of Technology
    2011
    Abstract
    The response of a rod-stabilized, V-shaped, premixed flame to upstream velocity and equivalence ratio perturbations was characterized as a function of excitation frequency. The response of the flame to equivalence ratio perturbations was calculated, assuming that the heat release response is controlled by contributions from three disturbances. These disturbances include flame speed, heat of reaction and flame area. Using an analytical model, based on linearization of the front tracking equation for inclined flames, the kinematics of a V-flame anchored on a central obstacle was investigated and its response was compared with that of a conical flame. The results suggest that the phase response... 

    Investigation of Magnetic and Electromagnetic Methods in Electron Beam Shaping and their Scaling Behavior for Nanometric field Emitters

    , M.Sc. Thesis Sharif University of Technology Riazi, Arash (Author) ; Rashidian, Bizhan (Supervisor)
    Abstract
    Nowadays electron beams have extensive applications in electon-optic devices such as microwave devices, electron microscopes and flat displays. So shaping and confinment of electron beams is of great importance. In the other hand, scaling of electron emitters to atomic limit causes new chalanges in reliability and beam shaping. Designing electron optic devices for nanoscale emitters needs great knowledge regarding materials properties and electron optic systems behavior in nano scale. In this study, beside providing basic optics of electron beam and effects Of external electronmagnetic fields, properties of electron optical devices
    Considering nano scale limitations is considered. In... 

    Investigations on Stability of Premixed Flames in Turbine Engines

    , Ph.D. Dissertation Sharif University of Technology Riazi, Rouzbeh (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    This thesis is a complementary experimental and theoretical investigation on stability of premixed flames and a study of combustion instability and combustion dynamics in a swirl-stabilized combustor, aiming to understand the fundamental mechanisms responsible for combustion oscillations in gas turbine combustors. Theoretical investigations on acoustic modeling of a simple combustor and a study on kinematic response of premixed flames to flow perturbations have been discussed in the first part of this work. In another part of thesis, experimental studies on the response of premixed flames to acoustic perturbations have been performed. In addition, experimental investigations on combustion... 

    The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , 2014 , pp. 3624-3634 ; ISSN: 00219568 Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    2014
    Abstract
    The use of adjusted/optimized saline water categorized into two different classes namely smart water (SW) and low salinity (LoSal) water injection has been proposed for more oil recovery from specific types of oil reservoirs. There are possible mechanisms concerning SW flooding that have been proposed in the literature, some of them are still subject to more examination. In this study, an experimental investigation is performed to determine the influence of type and amount of salt to the surface properties including interfacial tension (IFT) and contact angle (CA) of aqueous solution + acidic and asphaltenic crude oil + carbonate rock systems. For this purpose, the concentration of different... 

    Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 137 , 2016 , Pages 134-143 ; 09204105 (ISSN) Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Gas injection process for more oil recovery and in particular CO2 injection is well-established method to increment oil recovery from underground oil reservoirs. CO2 sequestration which takes place during this enhanced oil recovery (EOR) method has positive impact on reducing the greenhouse gas emission which causes global warming. Direct gas injection into depleted oil reservoirs, encounters several shortcomings such as low volumetric sweep efficiency, early breakthrough (BT) and high risk of gas leakage in naturally fractured carbonate oil reservoirs. Carbonated water injection (CWI) has been recently proposed as an alternative method to alleviate the problems associated with gas... 

    Mechanistic study on the dynamic interfacial tension of crude oil + water systems: Experimental and modeling approaches

    , Article Journal of Industrial and Engineering Chemistry ; Volume 35 , 2016 , Pages 408-416 ; 1226086X (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2016
    Abstract
    This study investigates dynamic interfacial tension (DIFT) of acidic crude oil (ACO) and non acidic/basic crude oils (BCO) + deionized water (DW) as a function of pressure from 500 to 4000 psi, and temperature from 30 to 80 °C using an axisymmetric drop shape analysis (ADSA) technique. DIFTs are also modeled using dynamic adsorption model, mono-exponential decay model, and empirical equations. The results showed that if a reduction in the surface excess concentration due to increasing temperature overlooks the total entropy of the molecules in the system, an increase in IFT would be expected  

    Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir

    , Article Process Safety and Environmental Protection ; Volume 105 , 2017 , Pages 361-372 ; 09575820 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2017
    Abstract
    The concerns for water availability, affordability and environmental consideration have motivated more research on the development of smart water injection for enhanced oil recovery process. Although wettability alteration has been considered as the dominant mechanism, there is an ample space in this area needs to be explored more. Therefore, a systematic series of experiments is designed and performed to examine the effect of salinity and ion type on the wettability of the carbonate rock surface to find the active mechanisms. For this purpose, the concentrations of different salts including NaCl, KCl, CaCl2 and MgCl2 are examined during 10 days of soaking for salts concentrations range of... 

    Underground natural gas storage in a low quality gas reservoir - Produced gas quality control by rate optimization

    , Article 79th EAGE Conference and Exhibition 2017: Energy, Technology, Sustainability - Time to Open a New Chapter, 12 June 2017 through 15 June 2017 ; 2017 ; 9789462822177 (ISBN) Ansari, N ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2017
    Abstract
    Due to increasing demand for natural gas, storage plan development in order to cope with seasonal gas fluctuations and ensure constant gas supply during a year, has recently become highly indispensable. However, developing underground gas storage (UGS) facility is so costly which may sometimes discourage the investment.One of the main cost items while fulfilling a UGS project can be attributed to cushion gas; this is part of gas inventory which remainspermanently in the storage field in order to maintain pressure and provide adequate deliverability rate during production cycles.For this reason, UGS in low quality gas reservoirs has been recentlyproposed. In such a case, native reservoir gas... 

    Activating solution gas drive as an extra oil production mechanism after carbonated water injection

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 11 , 2020 , Pages 2938-2945 Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Materials China  2020
    Abstract
    Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil... 

    Modeling and Prediction Mechanical Properties Foam Graphene Based on Numerical Method

    , M.Sc. Thesis Sharif University of Technology Riazi, Ardalan (Author) ; Adib Nazari, Saeed (Supervisor)
    Abstract
    Purpose of these investigations is modeling and prediction of foam graphene like linear elastic modules and density of that material. In this modeling with two numerical method molecular dynamics and finite element method is used in that with multiscale method various numerical method match together. At the beginning of the modeling various image of foam graphene in Nano abd meso scale in the case of size and scale survaied till with this checking, scale of the work and varios of modeling was created and with this modeling linear elastic modules and density were estimation  

    Influence of ridge filter material on the beam efficiency and secondary neutron production in a proton therapy system

    , Article Zeitschrift fur Medizinische Physik ; Volume 22, Issue 3 , September , 2012 , Pages 231-240 ; 09393889 (ISSN) Riazi, Z ; Afarideh, H ; Sadighi-Bonabi, R ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this work, the 3D proton dose profile is calculated in a homogenous water phantom using a Monte Carlo application developed with the Geant4 toolkit. The effect of the ridge filter material (for SOBP widths of 6, 9 and 12 cm) on the homogeneity of the dose distribution, secondary neutron production and beam efficiency are investigated in a single ring wobbling irradiation system. The energy spectrum of secondary neutrons per primary proton at various locations around the phantom surface is calculated. The simulation revealed that most of the produced neutrons are released at slight angles which enable them to reach the patient and consequently to be hazardous. Also, the homogeneity of the...