Loading...
Search for: rouhi--r
0.11 seconds

    Using a truss-inspired model with the uniform strength optimization theory to predict spongy bone geometry in proximal femur

    , Article American Journal of Applied Sciences ; Volume 6, Issue 3 , 2009 , Pages 449-455 ; 15469239 (ISSN) Pishdast, H ; Farahmand, F ; Rouhi, G. R ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new naïve approach for simulating bone remodeling process. It is based on the uniform strength theory of optimization and employs a truss-like model for bone. The truss was subjected to external loads including 5 point loads simulating the hip joint contact forces and 3 muscular forces at the attachment sites of the muscles to the bone and the rest are reactions of ligaments. The strain in the links was calculated and the links with high strains were identified. The initial truss is modified by introducing new links wherever the strain exceeds a prescribed or critical value. The critical value was assumed to be equal to an average of the absolute value of strains in the... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Implementation and Evaluation of P3M3 and Wysocki Maturity Models in the South Pars Projects and Presenting Improvement Projects

    , M.Sc. Thesis Sharif University of Technology Rouhi, Amir Hossein (Author) ; Shadrokh, Shahram (Supervisor)
    Abstract
    This thesis represents results of research about portfolio, program and project management maturity level in South Pars Projects’ contractor organizations. The purpose is to develop an understanding of management maturity regarding these three levels and especially project management in these organizations. Since oil and gas projects have major role in our economy, doing such appraisals cause cost deduction and increasing productivity in these organizations. In this research, contractor organizations and samples from South Pars Projects have been chosen, and then based on P3M3 and Wysocki Maturity Models, which is based on PMBOK standard, and by using their questionnaires appraisal has been... 

    Solid Phase Dynamic Extraction Based on Polypyrrole Fiber for Determination Trace Amount of Atrazine in Aqueous Samples with GC-MS

    , M.Sc. Thesis Sharif University of Technology Rouhi, Zahra (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    This research is a bout a novel sample prepration procedure that used polypyrrole film into a stainless steel needle as a fiber coating for solid phase dynamic extraction(SPDE) with using a home-made SPDE devise and gas chromatography – mass spectroscopy for the extraction and detectionof Atrazine from the aqueous sample in direct mode of SPDE. Polypyrrole film was directly electrodeposited into the needle in a aqueous sodium dodecyl sulfonate solution with pecial set up in optimom condition of potential, time and concentration of polypyrrole. To enhance the sensitivity of the SPDE , variables affecting adsorption and desorption steps such as temperature,time,PH, flowrate and ionic strength... 

    Benign and malignant breast tumors classification based on region growing and CNN segmentation

    , Article Expert Systems with Applications ; Volume 42, Issue 3 , February , 2014 , Pages 990-1002 ; 09574174 (ISSN) Rouhi, R ; Jafari, M ; Kasaei, S ; Keshavarzian, P ; Sharif University of Technology
    Elsevier Ltd  2014
    Abstract
    Breast cancer is regarded as one of the most frequent mortality causes among women. As early detection of breast cancer increases the survival chance, creation of a system to diagnose suspicious masses in mammograms is important. In this paper, two automated methods are presented to diagnose mass types of benign and malignant in mammograms. In the first proposed method, segmentation is done using an automated region growing whose threshold is obtained by a trained artificial neural network (ANN). In the second proposed method, segmentation is performed by a cellular neural network (CNN) whose parameters are determined by a genetic algorithm (GA). Intensity, textural, and shape features are... 

    Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Mortazavi, J ; Rouhi, G ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods: Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to... 

    The corrosion investigation of rebar embedded in the fibers reinforced concrete

    , Article Construction and Building Materials ; Volume 35 , October , 2012 , Pages 564-570 ; 09500618 (ISSN) Kakooei, S ; Akil, H. M ; Dolati, A ; Rouhi, J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    One effective method for preventing corrosion of steel reinforcement and improving the mechanical properties of concrete is changing the physical nature of concrete by adding different materials. In this study, we have used polypropylene fibers as an additional material. We have compared the corrosion rate of rebar using different volume ratios and sizes of polypropylene fibers. Reinforcement potential increased as the amount of fibers increased from 0 to 2 kg m -3. The polypropylene fibers delay the initial corrosion process by preventing cracking, thereby decreasing permeability of the concrete. In addition, the corrosion rate of concrete samples made with Kish Island coral aggregate was... 

    Modeling the size dependent pull-in instability of cantilever nano-switch immersed in ionic liquid electrolytes using strain gradient theory

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 976-989 ; 10263098 (ISSN) Kanani, A ; Koochi, A ; Farahani, M ; Rouhi, E ; Abadyan, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    It is well recognized that size-effect often plays a significant role in the mechanical performance of nano-structures. Herein, strain gradient continuum elasticity is employed to investigate the size dependent pull-in instability of the cantilever nanoactuators immersed in ionic liquid electrolyte. The presence of dispersion forces, i.e. Casimir and van der Waals field, is considered in the theoretical model as well as the double-layer electrochemical attraction. To solve the non-linear constitutive equation of the system, two approaches, i.e. the Rayleigh Ritz Method (RRM) and the numerical solution method, are employed. Impact of the size dependency and dispersion forces on the... 

    Early post-operative performance of an anatomically designed hybrid thread interference screw for ACL reconstruction: A comparative study

    , Article Journal of Biomechanics ; Volume 135 , 2022 ; 00219290 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Javad Mortazavi, S. M ; Rouhi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Although the anterior cruciate ligament (ACL) reconstruction using interference screw is a well-accepted surgical procedure, patients still suffer graft failure in the initial rehabilitation phase. Graft fixation stability of a newly designed anatomical hybrid thread tapered interference screw (AHTTIS) was compared with a conventional standard one (CSIS) by conducting in-vitro mechanical tests. According to the CSIS manufacturer's instruction, eight tapered bone tunnels, matching AHTTIS geometry, and eight straight cylindrical tunnels were drilled in artificial bone blocks. Bovine tendon grafts were fixed using AHTTIS and CSIS in their corresponding bone tunnels. Each graft was subjected to... 

    Stimulation of spinal cord according to recorded theta hippocampal rhythm during rat move on treadmill

    , Article Biomedizinische Technik ; Volume 68, Issue 4 , 2023 , Pages 351-360 ; 00135585 (ISSN) Rouhi, S ; Rahmani, S ; Shanesazzadeh, F ; Ahmadvand, T ; Namazi, M ; Fardmanesh, M ; Kiani, S ; Sharif University of Technology
    De Gruyter Open Ltd  2023
    Abstract
    Objectives: Several studies have revealed that after spinal cord injury (SCI), in acute and sub-acute phase the spinal cord neurons below the injury are alive and could stimulate by use of electrical pulses. Spinal cord electrical stimulation could generate movement for paralyzed limbs and is a rehabilitation strategy for paralyzed patients. An innovative idea for controlling spinal cord electrical stimulation onset time is presented in current study. Methods: In our method, the time of applying electrical pulse on the spinal cord is according to rat behavioral movement and two movements behaviors are recognized only based on rat EEG theta rhythm on the treadmill line. Briefly, 5 rats were... 

    2-D Bone Structure Prediction of Proximal Femur and Dominant Joint Load Estimation using Level Set Method and Bone RemodelingTheories

    , M.Sc. Thesis Sharif University of Technology Keivan Bahari, Mahsa (Author) ; Farahmand, Farzam (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor) ; Rouhi, Gholamreza (Co-Advisor)
    Abstract
    Bones adapt their form and structure to make an efficient use of their mass against the applied mechanical loads. So, it is not surprising to assume that the geometry and density distribution of a bone contains information about its loading history. The objective of this work was to develop a framework to simulate the bone remodeling procedure as a topology optimization process and then use this framework to develop a simple technique for estimating the dominant joint loads based on the bone’s density distribution.
    At first, the remodeling equation was derived from the structural optimization task of minimizing the strain energy in each time step, using the level set method. Employment... 

    Network vulnerability analysis through vulnerability take-grant model (VTG)

    , Article 7th International Conference on Information and Communications Security, ICICS 2005, Beijing, 10 December 2005 through 13 December 2005 ; Volume 3783 LNCS , 2005 , Pages 256-268 ; 03029743 (ISSN); 3540309349 (ISBN); 9783540309345 (ISBN) Shahriari, H. R ; Sadoddin, R ; Jalili, R ; Zakeri, R ; Omidian, A. R ; Sharif University of Technology
    2005
    Abstract
    Modeling and analysis of information system vulnerabilities helps us to predict possible attacks to networks using the network configuration and vulnerabilities information. As a fact, exploiting most of vulnerabilities result in access rights alteration. In this paper, we propose a new vulnerability analysis method based on the Take-Grant protection model. We extend the initial Take-Grant model to address the notion of vulnerabilities and introduce the vulnerabilities rewriting rules to specify how the protection state of the system can be changed by exploiting vulnerabilities. Our analysis is based on a bounded polynomial algorithm, which generates the closure of the Take-Grant graph... 

    Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) Abdolvahab, R. H ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
    2011
    Abstract
    We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Reply: Abedpour, asgari, and tabar

    , Article Physical Review Letters ; Volume 106, Issue 20 , 2011 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2011

    Irreversibility in response to forces acting on graphene sheets

    , Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2010
    Abstract
    The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T

    Analysis of design goals of cryptography algorithms based on different components

    , Article Indonesian Journal of Electrical Engineering and Computer Science ; Volume 23, Issue 1 , 2021 , Pages 540-548 ; 25024752 (ISSN) Molk, A.M.N.G ; Aref, M. R ; Khorshiddoust, R. R ; Sharif University of Technology
    Institute of Advanced Engineering and Science  2021
    Abstract
    Cryptography algorithms are a fundamental part of a cryptographic system that is designed and implemented to increase information security. They are the center of attention of experts in the information technology domains. Although the cryptography algorithms are implemented to attain the goals such as confidentially, integrity, and authenticity of designing, but other matters that must be noticed by designers include speed, resource consumption, reliability, flexibility, usage type, and so on. For the useful allocation of hardware, software, and human resources, it is important to identify the role of each of the factors influencing the design of cryptographic algorithms to invest in the... 

    Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) Radja, N.H ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
    2005
    Abstract
    We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of... 

    Multifunctional hyperelastic structured surface for tunable and switchable transparency

    , Article Applied Sciences (Switzerland) ; Volume 11, Issue 5 , 2021 , Pages 1-11 ; 20763417 (ISSN) Mahabadi, R. K ; Goudarzi, T ; Fleury, R ; Naghdabadi, R ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    We leverage the crucial hyperelastic properties of a multifunctional structured surface to optimize the reconfigurability of the electromagnetic transmission under large nonlinear mechanical deformations. This multiphysics, multifunctional, hyperelastic structured surface (HSS) offers two simultaneous intriguing functionalities; tunability and switchability. It is made of copper reso-nators and a Polydimethylsiloxane (PDMS) substrate, which is one of the most favorable deformable substrates due to its hyperelastic behavior. The proposed HSS is fabricated via an original cost-effective technique and the multiphysics functionalities are captured in both experimental tests and numerical... 

    MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments

    , Article PLoS Computational Biology ; Volume 18, Issue 6 , 2022 ; 1553734X (ISSN) Alinejad Rokny, H ; Modegh, R. G ; Rabiee, H. R ; Sarbandi, E. R ; Rezaie, N ; Tam, K. T ; Forrest, A. R. R ; Sharif University of Technology
    Public Library of Science  2022
    Abstract
    Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions. To identify biologically relevant interactions, several background models that take biases such as distance, GC content and mappability into account have been proposed. Here we introduce MaxHiC, a background correction tool that deals with these complex biases and robustly...