Loading...
Search for: saadati--ali-akbar
0.137 seconds

    PEC Sensing of Glucose Using one Dimensional TiO2 Nanostructure Modified by Two Dimensional Material

    , M.Sc. Thesis Sharif University of Technology Saadati, Ali Akbar (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    In this study, one dimensional titanium dioxide nanostructures including nanotube and nanowire were synthesized by anodization and hydrothermal methods respectively and were used for PEC glucose sensing. Meanwhile various length of nanotubes was investigated toward glucose sensing. Finally, nanotubes with the length of 2.7 µm were selected as the optimum sample. Finally, to improve sensitivity toward glucose, TiO2 nanotubes were modified by graphene oxide nanosheets which caused several percent increase in PEC sensing performances. In the next stage branched TiO2 nanowires were grew on FTO substrate in various conditions. In spite of acceptable reproducibility of this structure,... 

    Damage Map for a Light-Weight Sandwich Beam under Low Velocity Impact Loading

    , M.Sc. Thesis Sharif University of Technology Saadati, Saeed (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    The main purpose of this study is the analysis of low velocity impact on the light weight sandwich beams. Some parameters such as weight, failure mode, and impact energy absorption capability are very essential in the design of sandwich beams. The failure mode map is a technique to design sandwich structures, in which no single component is over-designed with respect to other components. In this study, the failure mode map of foam core sandwich beams composed of E-glass/Epoxy and PVC foam is drawn and investigated by an analytical method. For this purpose, displacement relations for bending of a sandwich beam are written using higher order theory. In addition, the sandwich beam is modeled... 

    Bioactivity of Surface Modified Titanium Alloy Ti-6Al-4V ELI by Pack Siliconizing in Simulated Body Fluid

    , M.Sc. Thesis Sharif University of Technology Rezvani, Alireza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Titanium alloy Ti-6Al-4V ELI with high biocompatibility and corrosion resistance, has a lot of applications in biomedical engineering. Disadvantage of this alloy is it’s disability to create a fast and good contact with the host/bone environment, after implanting in the body. Beside that it has low wear resistance. Nowadays to optimize the wear resistance, bioactivity and osteoconduction of surface of implants which are made from this alloy, the surface morphology are optimized in size and distribution. Different surface treatments are used for producing rough and porous surfaces to improve bioactivity along with wear resistance. In this study, surface modification of Ti-6Al-4V ELI was done... 

    Characterization of Metallurgical and Geometrical Parameters on Fracture Behavior of Pure Titanium thin Sheets

    , M.Sc. Thesis Sharif University of Technology Nasiri, Hamid (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Commercially pure titanium (CP-Ti) is an important groups of titanium family and because of high strength, low density, high corrosion resistance and biocompatibility, this group of titanium is a suitable choice for application at chemical, petrochemical and medicine industry. Nowadays surgeons have a tendency toward use of CP-Ti instead of Ti-6Al-4V alloy. Moreover, because of body anatomy limitation, use of thick sheets result in high volume and damage soft tissue. Therefore, for sheet thickness reduction, study of the effects of metallurgical and geometrical parameter on fracture behavior of thin sheets is important. In this study, the fracture behavior of CP-Ti thin sheets investigated.... 

    Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection

    , Article Surfaces and Interfaces ; 2021 ; 24680230 (ISSN) Saadati, A ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The necessity of research in food and nutrition and the emergence of diabetes mellitus call for fast and efficient glucose detection. Here, series of highly sensitive non-enzymatic photoelectrochemical glucose sensor based on engineered titanium dioxide nanotube arrays has been synthesized using a simple electrochemical approach to tune nanotubes morphology in a way that the highest sensitivity factor (525.5 µAmM−1cm−2) and saturation concentrations (0.18 mM) achieved in the photoelectrochemical sensor. The formation of oxygen-rich titanium oxide was confirmed by several techniques. Dependent on the growth condition, nanotube length changed from 1.9 to 8.4 µm while their inner diameter... 

    Morphology control in oxygen-rich nanotubular titania for enzyme-free glucose detection

    , Article Surfaces and Interfaces ; Volume 28 , 2022 ; 24680230 (ISSN) Saadati, A ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The necessity of research in food and nutrition and the emergence of diabetes mellitus call for fast and efficient glucose detection. Here, series of highly sensitive non-enzymatic photoelectrochemical glucose sensor based on engineered titanium dioxide nanotube arrays has been synthesized using a simple electrochemical approach to tune nanotubes morphology in a way that the highest sensitivity factor (525.5 µAmM−1cm−2) and saturation concentrations (0.18 mM) achieved in the photoelectrochemical sensor. The formation of oxygen-rich titanium oxide was confirmed by several techniques. Dependent on the growth condition, nanotube length changed from 1.9 to 8.4 µm while their inner diameter... 

    The Effect of Martensite Volume Fraction on Toughness of Triple-Phase Steels

    , M.Sc. Thesis Sharif University of Technology Zare, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    AISI 4340 steel bars were austenitized at 900°C for 1 hour followed by heating at 740°C (ferrite and austenite region) for 100 min and quenching into a salt bath at 300°C for different times followed by quenching into water to obtain triple phase microstructures with 34 Vol.% ferrite and various martensite (or bainite) contents. Presence of three phases in adjacent of each other confirmed by metallographic analysis and TEM technique. Volume fraction of different phases was measured by image analyser. The results of optical microscopy showed that by increasing VM, morphology of martensite varies from uniform distribution of small spherical network particles to large blocky islands with... 

    Effect of Martensite Volume Fraction on Fatigue Properties of Ferrite- Bainite- Martensite Triple Phase Steel

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The introduction of multi phase steels in recent years resulted in a considerable increase in development of some industries such as automobiles. By inducing soft and hard phases together, these steels could bring better mechanical properties than classical ones. Recent studies on 4340 ferritic- bainitic and ferritic- martensitic dual phase steels, indicate that 34 volume percent ferrite with hard phase, has the best combination of strength, toughness and fatigue properties. In present research, by proper heat treatment on a 4340 steel, it is tried to prepare specimens ferritic- bainitic- martensitic triple phase steels with 34 volume percent of ferrite and different percents of martensite.... 

    Effect of TLP Bonding on Microstructure and Thermal Fatigue Properties of Co-Based FSX-414 Superalloy

    , Ph.D. Dissertation Sharif University of Technology Bakhtiari, Reza (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In this research, transient liquid phase (TLP) bonding of FSX-414 superalloy was investigated using MBF-80 interlayer. The bonding was performed at different temperatures (1050-1200oC) for various times (1-120min). Also, different gap sizes were studied using the interlayer with various thicknesses (25-100µm). Homogenizing treatment was performed at different temperatures (1175-1225oC) and times (1-6h) for the samples with complete isothermal solidification. The microstructure of the samples were studied using the optical, scanning electron and transmission electron microscopes. Also, XRD, SEM/EDS, SEM/WDS and TEM/EDS analyses were used to analyse the observed phases at the joints. To... 

    Effect of Transient Liquid Phase(TLP)Diffusion Bonding on Fatingue Properties of Al 6061-SiC Composite

    , M.Sc. Thesis Sharif University of Technology Khabir, Maibod (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In the research transient liquid phase bonding of AL6061-SiC composite was performed using copper as interlayer. The joining praocess was performed in various tetemperatures (560c and 580c and 600c) And times (6 and 8 hours). Optimum Joining condition was determined by using optical and of the joint, micro hardness test was performed from the bonding zone to the bulk of the base composite. The fatigue endurance limit of Al6061-SiC composite was determined by several fatigue tests and TLP bonded samples were loaded under achieved endurance limit stress. Finally fatigue fracture surface of both base composite and TLP bonded samples were studied by using of scanning electronic microscope  

    The Effect of Interlayer Composition on Microstructure and Mechanical Properties of Transient Liquid Phase Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Azqadan, Erfan (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Interlayer composition as one of the most important factors of TLP bonding could affect bonding region composition and microstructure that both of them govern the mechanical properties of the joint. Due to the risk of substrate microstructure degradation , welding of dual phase steel needs more cautions. TLP bonding ideally acquires joints having more similar microstructure to substrate. Moreover , using this method could avoid the change of base metal microstructure when heat treatment of carbon steel is postponed until after bonding. Fe-based , Ni-based and commercially pure Cu are three different composition has been studied in this work. The bonded samples were investigated by optic and... 

    The Effect of Pressure on Microstructure and Mechanical Properties of TLP Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Fathi, Mohammad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Dual Phase ferritic-martensitic steels are kind of high strength low alloy steels (HASLA) which are widely used in industry because of their strength and formability. Since welding of dual phase steels in conventional welding methods causes structural change and Subsequently alters mechanical properties of both weld zone and heat affected zone(HAZ), additional operations which are not commercially viable is needed to achieve a dual phase structure in structurally changed regions. In this study, transient liquid phase (TLP) bonding method is used during dual phasing process in order to preserve dual phase ferritic-martensitic structure and avoid extra heat treatment. Applied pressure during... 

    Microstructure-mechanical Properties Relationship of Transient Liquid Phase Bonded 304 Stainless Steel With a Co-based Interlayer

    , M.Sc. Thesis Sharif University of Technology Sadeghian, Mohammad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Stainless steels have many applications in different industries like chemistry, medicine and food production. So for using these alloys it is necessary to join them with appropriate method. In this research, microstructure-mechanical properties relationship of 304LC austenitic stainless steel transient liquid phase bonded using a Co-based interlayer was investigated. For this purpose, bonding was conducted at 1180 ℃ for different holding times. Microstructure of the joints was evaluated by optical microscopy (OM) and Scanning Electron Microscopy (SEM). The results showed that isothermal solidification (IS) was completed within 1800s and no intermetallic compound was formed in the joint area... 

    Evaluation of Microstructure and Fatigue Properties of HSLA-100 Steel Welded by SMAW and FCAW Methods

    , M.Sc. Thesis Sharif University of Technology Shahrani, Siamak (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    After World War II, steel bearings containing copper element have been developed by the Navy of the United States of America with the HSLA-100 brand. Since 1890 and in order to manufacture tanks and tools for the body of navy equipment, the steel HY 80 was used instead of HSLA-100. Because of the high carbon content, the welding properties of the HY 80 are low. Furthermore, increasing of hardness and decreasing of toughness in the heat-affected zone generated during the welding process lead to susceptibility of this alloy to hydrogen cracking and brittle fracture. Therefore, in order to minimize the cost of welding, low-alloy high strength steel (HSLA) is used which contain copper. Reducing... 

    Microstructural and Mechanical Properties of TLP Bonded SS 304 with Fe-base Interlayer

    , M.Sc. Thesis Sharif University of Technology Jabbari, Farzin (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Cooling sandwich panels are one of the components of the heat exchangers used to cool the components of the sandwich panels . One of the applications of TLP Bonding for steel can be called cooling sandwich panels. In this research , TLP of 304 Stainless Steel , using Fe-base interlayer at 1200 C has been investigated . Cross section of bonded samples were examined by optical and scanning electron microscopes. Microscopy results revealed that 2h is sufficient for completion of isothermal solidification and there is no eutectic compound at bonding zone . Bonding in this condition resulted in the free precipitates in the diffusion affected area. By analyzing eutectic phase in bonding areas at... 

    Corrosion Resistance of TLP Bonded Stainless Steel 304

    , M.Sc. Thesis Sharif University of Technology Kazazi, Arash (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Transient liquid phase bonding of AISI 304 was carried out in a vaccum furnace using a Ni-based interlayer. The effect of bonding time on microstructure and mechanical properties of joints at temperature of 1150 ⁰C was investigated. The results showed that isothermal solidification was completed within 20 min and eutectic phase disappeared across the joint region. The joints with complete isothermal solidification were homogenised for 180 min at temperature of 950 ⁰C. The results of shear test showed that the average shear strength of homogenised samples was about 83% thet of the base metal at the same heat treatment cycle. Corrosion behavior of the TLP bonded and base metal was studied at... 

    Inflation with Light Species, A Possible Realization of Warm Inflation

    , M.Sc. Thesis Sharif University of Technology Hooshangi, Sina (Author) ; Abolhasani, Ali Akbar (Supervisor)
    Abstract
    In this project we investigate the effect of coupling of the inflaton with light particles which have oscillating mass that depends on inflaton. As the inflaton slowly rolls towards the minimum of its potential, the mass of other particles changes periodically(monodromy). The monodromy structure with tuning the parameters of model allows us to produce ultrarelativistic particles during inflation. These particles dilute with the expansion of the universe but continuous particle production leads to burst of particles at the end of inflation. It should be noted that other Warm Inflation models are phenomenological models which is assumed that during the inflation, the inflaton energy is... 

    A Survey in Inflation and Roots of Axionic Inflationary Models

    , M.Sc. Thesis Sharif University of Technology Minaei, Pouyan (Author) ; Abolhasani, Ali Akbar (Supervisor)
    Abstract
    Inflation first introduced for solving the puzzles of the standard model of cosmology. Soon it became clear that this paradigm can provide a natural way for production of Initial conditions for the birth of large-scale structures: cosmological perturbations. But inflationary models are usually phenomenological models. They are constructed to solve the problems of the standard model of cosmology and explain the properties of cosmological fluctuations. Where do they come from? A property of a big family of inflationary models is the flatness of their potential. What would may be the cause of this flatness? . . .. In this thesis our purpose is searching about one probable field theoretic root... 

    Mobile Robot Navigation and Localization in the Presence of Hurdles in Cluttered Environment Using Fuzzy Control and Kalman Filter

    , M.Sc. Thesis Sharif University of Technology Khosravi, Hamed (Author) ; Khayyat, Ali Akbar (Supervisor)
    Abstract
    In this thesis, in order to improve the performance of the mobile robot navigation, a Fuzzy approach is used for making a safe path in the cluttered environment with hurdles in the work space of the robot. To this end, based on data collected from instantaneous location of the robot and location of the robot, heuristic rules are extracted. Also, in order to obtain optimal data fusion of the sensors, Kalman filter is used to localize the robot. In this regards, by using the kinematics of the robot and supposing the white noise in the process and measurements, the position and orientation of the mobile robot are estimated in a real-time and adaptive manner  

    The Effect of Bainite Volume Fraction and Morphology on the Wear Resistance of a Ferrite-Bainite Dual phase Steel

    , M.Sc. Thesis Sharif University of Technology Safarpour, Masoud (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The studied steel was AISI 4340 steel. In order to obtain dual-phase steel with a volume fraction of 60, 66 and 75% bainite, samples were heated in the α+γ region at temperatures of 730, 735 and 740 oC for 120 minutes and then to create lower and upper morphology of bainite, samples were transferred directly to salt bath at different target temperatures (300 oC and 400 oC) and kept 60 minutes. Also, to produce a Martemper microstructure, the full martensitic sample was tempered at 260 oC for 90 minutes. Tensile and hardness tests revealed that with the increasing volume fraction of lower bainite, yield strength, tensile strength, and hardness increased from 986 to 1211 MP, 1185 to 1519, and...