Loading...
Search for: sabati--monther
0.054 seconds

    Learning Methods of Minimization of Drive Test (Signal Fingerprinting Method)

    , M.Sc. Thesis Sharif University of Technology Sabati, Monther (Author) ; Hossein Khalaj, Babak (Supervisor)
    Abstract
    Drive Test is a known technique witch network operators use to optimize and evaluate their mobile network infra in terms of capacity, coverage, and quality of service. Conducting Drive tests in outdoor areas is time-consuming and increases CAPEX and OPEX. Also, in areas with many giant physical obstacles, like towers and buildings in cities, Drive test is nearly impossible. In this paper, based on data and measurements provided by various Drive tests and TEMS MDT solution, we use an advanced processing algorithm in our database to bring signal coverage map practically to the users' cellphones. By taking advantage of grid-based signal fingerprinting technique, and filtering geo-tagged... 

    Introducing a rheology model for non-newtonian drilling fluids

    , Article Geofluids ; Volume 2021 , 2021 ; 14688115 (ISSN) Rashidi, M ; Sedaghat, A ; Misbah, B ; Sabati, M ; Vaidyan, K ; Mostafaeipour, A ; Dehshiri, S. S. H ; Almutairi, K ; Issakhov, A ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    An API standard drilling fluid was investigated from laminar to turbulent flow conditions using an in-house-built viscometer at speeds from 200 to 1600 RPM. A power-based method was applied to obtain the apparent viscosity and the shear stress of the water-based drilling mud (WBM) in the annulus of the viscometer. Then, a MATLAB optimization program was developed to obtain model parameters for five rheology models integrated in a generalized Herschel-Bulkley-Extended (HBE) model and two widely used 4-parameter models in drilling industry. It is found that the Bingham, Cross, and HBE rheology models have precisely matched the WBM measurements in the viscometer. A generalized Reynolds number... 

    Friction reduction of Al2O3, SiO2, and TiO2 nanoparticles added to non-Newtonian water based mud in a rotating medium

    , Article Journal of Petroleum Science and Engineering ; Volume 217 , 2022 ; 09204105 (ISSN) Misbah, B ; Sedaghat, A ; Rashidi, M ; Sabati, M ; Vaidyan, K ; Ali, N ; Omar, M. A. A ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In drilling industry, energy consumption counts from 20 to 40 percent of total costs. Enhanced water-based mud (WBM) drilling fluids with nanoparticles can save energy in drilling processes. An in-house Taylor-Couette flow system (TCS) was developed at Australian University (AU) to study WBM enhanced by Al2O3, SiO2, and TiO2 nanoparticles. The TCS is really a practical tool to help well drillers with a rough idea of viscosity when nanoparticles are added. The TCS for sure cannot substitute advanced rheometry. The goal of the present experiment is to produce a rough estimate in field operation. Experimental results were examined with several rheology models in our previous publications. In... 

    Simulation of wellbore drilling energy saving of nanofluids using an experimental taylor–couette flow system

    , Article Journal of Petroleum Exploration and Production ; Volume 11, Issue 7 , 2021 , Pages 2963-2979 ; 21900558 (ISSN) Rashidi, M ; Sedaghat, A ; Misbah, B ; Sabati, M ; Vaidyan, K ; Mostafaeipour, A ; Hosseini Dehshiri, S. S ; Almutairi, K ; Issakhov, A ; Oloomi, S. A. A ; Malayer, M. A ; Arockia Dhanraj, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Power consumption of wellbore drilling in oil and gas exploitations count for 40% of total costs, hence power saving of WBM (water-based mud) by adding different concentrations of Al2O3, TiO2 and SiO2 nanoparticles is investigated here. A high-speed Taylor–Couette system (TCS) was devised to operate at speeds 0–1600 RPM to simulate power consumption of wellbore drilling using nanofluids in laminar to turbulent flow conditions. The TCS control unit uses several sensors to record current, voltage and rotational speed and Arduino microprocessors to process outputs including rheological properties and power consumption. Total power consumption of the TCS was correlated with a second-order...