Loading...
Search for:
sadeghi--arman
0.214 seconds
Total 433 records
Electrokinetic Flow in pH-Regulated Solid-State/Soft Micro-Nanochannels
,
Ph.D. Dissertation
Sharif University of Technology
;
Saeedi, Mohammad Hassan
(Supervisor)
;
Mousavi, Ali
(Co-Supervisor)
;
Sadeghi, Arman
(Co-Supervisor)
Abstract
In recent years, advances have been made in the field of miniaturization of the devices (in order to increase their efficiency, lessen the materials needed for the constructions and experiments, reduce costs and energy usage) resulting in the dramatic increase of surface to volume ratio in these devices. This progress has led to the dominance of surface forces which can be used to control very important interface phenomena having a special application such as electrokinetic. Using today’s manufacturing technology; it is possible to construct micro-nanochannels made from different materials such as silicon, glass, quartz, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA) whose...
Comparing half-metallic, MOKE, and thermoelectric behavior of the CrTiZ (Z = As, P) half-Heuslers: A DFT study
, Article Materials Research Express ; Volume 8, Issue 4 , 2021 ; 20531591 (ISSN) ; Zelati, A ; Boochani, A ; Arman, A ; Mirzaei, S ; Sharif University of Technology
IOP Publishing Ltd
2021
Abstract
Structural, half-metallic, magneto-optic, and thermoelectric properties of CrTiZ (Z = As, P) half-Heusleres compounds are investigated based on density functional theory. These compounds have mechanical stability in the ferromagnetic state with a high bulk modulus. They are often half-metallic with a large and integer magnetic moment and are very attractive in spintronics, magneto-optics applications. The magnetic moments of CrTiAs and CrTiP were 2.9865 μB and 3.00 μB, respectively, which were attributed to their ferromagnetic phase. Additionally, the positive sign of the phonon branches indicates the dynamic stability of these compounds. Applying both GGA and mBJ approximations, CrTiAs and...
The Effect of Rudder Angle on Ship’s Fuel Consumption
, M.Sc. Thesis Sharif University of Technology ; Khorasanchi, Mahdi (Supervisor) ; Zare, Arman (Co-Supervisor)
Abstract
The aim of this research is to investigate the effect of speed and direction of current on ship fuel consumption. A KCS benchmark model has been numerically studied in calm water and fourteen current and wind conditions with the same speed and different directions to determine how the ship performance is dependent on flow conditions. The model has been simulated in an artificial basin propelled by a single right-handed propeller via a CFD commercial code. Numerical results revealed a linear relationship between the deviation of current and wind from head-sea or following-sea conditions and the rudder angle. The head-sea and following-sea currents and winds increased and decreased the lateral...
Differentiating Signals Recorded from Rat Brain in Response to Different Olfactory Stimuli
, M.Sc. Thesis Sharif University of Technology ; Karbalaei Aghajan, Hamid (Supervisor)
Abstract
The olfactory sense in rats provides crucial information for identifying food sources, detecting threats, and facilitating social interactions. The olfactory bulb is one of the key brain regions involved in the initial processing of olfactory information and its transmission to higher brain areas for more complex processing. However, more advanced cognitive processes such as evaluation and decision-making rely on interactions between other brain regions. Among these, the striatum, as a part of the basal ganglia, plays a role in reward evaluation, reward-based learning, and shaping behaviors associated with sensory stimuli. This region contributes to learning, decision-making, and action...
Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method
, Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 ; Pak, A ; Sadeghi, H ; Sharif University of Technology
Asian Regional Conference on Soil Mechanics and Geotechnical Engineering
2020
Abstract
Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow...
Mechanical behavior during aging of plastically deformed AA6061-SiCp composite in different temperatures
, Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 226, Issue 4 , 2012 , Pages 322-329 ; 14644207 (ISSN) ; Serajzadeh, S
SAGE
2012
Abstract
In this study, the kinetics of aging in AA6061 and AA6061 with 5% volume fraction SiCp were studied and compared. The composite was first produced and homogenized using stir casting technique followed by hot extrusion with the ratio of 18:1. Then, both AA6061 and the composite were aged at three different temperatures including room temperature, 170 °C and 240 °C, while mechanical properties during aging were evaluated employing hardness measurements and tensile testing. Moreover, in order to assess the effect of plastic deformation on the kinetics of aging, a series of samples were first deformed by equal-channel angular pressing immediately after solution treatment and then aged in the...
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
, Article Physics of Fluids ; Volume 29, Issue 6 , 2017 ; 10706631 (ISSN) ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
2017
Abstract
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well...
Geotechnical characterization and collapsibility of a natural dispersive loess
, Article Engineering Geology ; Volume 250 , 2019 , Pages 89-100 ; 00137952 (ISSN) ; Kiani, M ; Sadeghi, M ; Jafarzadeh, F ; Sharif University of Technology
Elsevier B.V
2019
Abstract
During preliminary investigation phase of the national Chabahar-Zahedan railway line, serious geotechnical problems including non-uniform settlements, tensile cracks, and local collapse were reported in parts of the path near the coastline. A follow-up field investigation revealed that the in-situ soil at construction site has a metastable structure being sensitive to saturation and loading. Therefore, a comprehensive series of physical, chemical, electro-chemical, and geotechnical tests were conducted to classify and characterize the soil properties and behavior in its natural state. The natural soil was classified as a clayey loess with moderately dispersive to dispersive characteristics....
Evaluation of the topographical surface changes of silicon wafers after annealing and plasma cleaning
, Article Silicon ; Volume 12, Issue 11 , 2020 , Pages 2563-2570 ; Ţălu, Ş ; Dallaev, R ; Arman, A ; Sobola, D ; Salerno, M ; Sharif University of Technology
Springer Science+Business Media B.V
2020
Abstract
Purpose: The morphological stability of silicon single crystal wafers was investigated, after performing cleaning surface treatments based on moderate temperature annealing and plasma sputtering. Methods: The wafer surfaces were measured by Tapping mode atomic force microscopy in air, before and after the different treatments. The 3D images were segmented by watershed algorithm identifying the local peaks, and the stereometric parameters were extracted thereof. The analysis of variance allowed to better assess the statistically significant differences. Results: All the resulting quantities were critically discussed. It appeared that the different cleaning treatments affected differently the...
Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels
, Article Physics of Fluids ; Volume 29, Issue 12 , 2017 ; 10706631 (ISSN) ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
2017
Abstract
Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any...
Unsteady solute dispersion by electrokinetic flow in a polyelectrolyte layer-grafted rectangular microchannel with wall absorption
, Article Journal of Fluid Mechanics ; Volume 887 , 2020 ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
Cambridge University Press
2020
Abstract
The dispersion of a neutral solute band by electrokinetic flow in polyelectrolyte layer (PEL)-grafted rectangular/slit microchannels is theoretically studied. The flow is assumed to be both steady and fully developed and a first-order irreversible reaction is considered at the wall to account for probable surface adsorption of solutes. Considering low electric potentials, analytical solutions are obtained for electric potential, fluid velocity and solute concentration. Special solutions are also obtained for the case without wall adsorption. To track the dispersion properties of the solute band, the generalized dispersion model is adopted by considering the exchange, the convection and the...
Dispersivity, collapsibility and microstructure of a natural dispersive loess from Iran
, Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 ; Nasiri, H ; Panahi, P. A ; Sadeghi, M ; Sharif University of Technology
Asian Regional Conference on Soil Mechanics and Geotechnical Engineering
2020
Abstract
A new type of collapsible soil was encountered in Southern Iran and caused some serious technical problems including subsidence, collapse and sinkholes during the construction of Zahedan-Chabahar railway. Field observations indicated that in-situ soil contains excessive amount of salts resulting in dispersive features in response to seepage forces in addition to its collapsibility. Therefore, a systematic research plan including field sampling and laboratory testing was carried out to investigate the observed geotechnical features. Results of physio-chemical tests revealed the dominance of Sodium in excess of 70% relative to total dissolved salts, which results in high dispersive potential....
Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel [electronic resource]
, Article Polymers for Advanced Technologies ; Volume 15, Issue 11, pages 645–653, November 2004 ; Sadeghi, M ; Hosseinzadeh, H
Abstract
The polysaccharide, kappa-carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′-methylene bisacrylamide (MBA) were used as a free-radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC-g-PMAM or hydrolyzed κC-g-PMAM (PMAM: polymethacrylamide) was characterized by FT-IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and...
Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm
, Article Transportation Research Part E: Logistics and Transportation Review ; Vol. 70, issue. 1 , October , 2014 , p. 274-292 ; Mousavi, S. M ; Niaki, S. T. A ; Sadeghi, S ; Sharif University of Technology
2014
Abstract
This paper presents a bi-objective VMI problem in a single manufacturer-single vendor multi-retailer (SM-SV-MR) supply chain, which a redundancy allocation problem is incorporated. In the hybridized problem, a manufacturer produces a single item using several machines that work in series, and stores it in a warehouse to replenish one vendor who delivers it to several retailers using the shortest possible route. A novel meta-heuristic, called hybrid bat algorithm (HBA), with calibrated parameters is utilized to find a near-optimum solution. To show the efficiency of HBA, the results are compared to the ones using the traditional BA and a genetic algorithm
Optimizing a multi-vendor multi-retailer vendor managed inventory problem: Two tuned meta-heuristic algorithms
, Article Knowledge Based Systems ; Volume 50 , September , 2013 , Pages 159-170 ; 09507051 (ISSN) ; Mousavi, S. M ; Niaki, S. T. A ; Sadeghi, S ; Sharif University of Technology
2013
Abstract
The vendor-managed inventory (VMI) is a common policy in supply chain management (SCM) to reduce bullwhip effects. Although different applications of VMI have been proposed in the literature, the multi-vendor multi-retailer single-warehouse (MV-MR-SW) case has not been investigated yet. This paper develops a constrained MV-MR-SW supply chain, in which both the space and the annual number of orders of the central warehouse are limited. The goal is to find the order quantities along with the number of shipments received by retailers and vendors such that the total inventory cost of the chain is minimized. Since the problem is formulated into an integer nonlinear programming model, the...
Optimising multi-item economic production quantity model with trapezoidal fuzzy demand and backordering: Two tuned meta-heuristics
, Article European Journal of Industrial Engineering ; Volume 10, Issue 2 , 2016 , Pages 170-195 ; 17515254 (ISSN) ; Niaki, S. T. A ; Malekian, M. R ; Sadeghi, S ; Sharif University of Technology
Inderscience Enterprises Ltd
2016
Abstract
In this paper, a multi-item economic production quantity model with fuzzy demand is developed in which shortages are backordered and the warehouse space is limited. While the demand is assumed to be a trapezoidal fuzzy number, the centroid defuzzification method is used to defuzzify fuzzy output functions. The Lagrangian relaxation procedure is first employed to solve the problem. Then, the model is extended to a constrained fuzzy integer nonlinear programming, in order to suit real-world situations. As the extended model cannot be solved in a reasonable time using exact methods, two meta-heuristic algorithms, named the genetic algorithm (GA) and the particle swarm optimisation (PSO) each...
The effect of thickness and film homogeneity on the optical and microstructures of the ZrO2 thin films prepared by electron beam evaporation method
, Article Optical and Quantum Electronics ; Volume 53, Issue 8 , 2021 ; 03068919 (ISSN) ; Talebani, N ; Zelati, A ; Ţălu, Ş ; Arman, A ; Mirzaei, S ; Jafari, A ; Sharif University of Technology
Springer
2021
Abstract
In this study, ZrO2 coatings with different thicknesses were grown by the electron beam evaporation technique. The crystalline structure was studied by XRD analysis which suggested the tetragonal and monoclinic phases for ZrO2 coatings. Additionally, the film thickness slightly enhanced the crystallinity. The surface morphology and fractal features were analyzed using Scanning Electron Microscopy (SEM). The surface statistical parameters and the fractal geometry were employed to analyze the impact of the coating thickness and homogeneity on the morphology of the films. The statistical processing and fractal dimension revealed variations in the morphology parameters due to the electron beam...
Plasma surface functionalization of boron nitride nano-sheets
, Article Diamond and Related Materials ; Volume 77 , 2017 , Pages 110-115 ; 09259635 (ISSN) ; Achour, A ; Solaymani, S ; Islam, M ; Vizireanu, S ; Arman, A ; Ahmadpourian, A ; Dinescu, G ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
On silicon substrates, boron nitride nanosheets (BNNS) consisting of interconnected hexagonal boron nitride nano-layers were produced via chemical vapor deposition process at 1200 °C whose roughness's are at the micrometer- and nanometer-scale. The BNNS were functionalized in argon plasma admixed with ammonia or nitrogen or oxygen. The samples were characterized to investigate the surface chemistry and structural changes after plasma treatment using X-ray photoelectron spectroscope and Micro-Raman spectroscope techniques, respectively. While no significant changes in the surface features, upon plasma treatments of the BNNS, were noticed during SEM and TEM examination, the oxygen functional...
Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3
, Article Microscopy Research and Technique ; 2021 ; 1059910X (ISSN) ; Sobola, D ; Ţălu, Ş ; Orudzev, F ; Arman, A ; Kaspar, P ; Dallaev, R ; Ramazanov, G ; Sharif University of Technology
John Wiley and Sons Inc
2021
Abstract
Thin films of bismuth and iron oxides were obtained by atomic layer deposition (ALD) on the surface of a flexible substrate poly(4,4′-oxydiphenylene-pyromellitimide) (Kapton) at a temperature of 250°C. The layer thickness was 50 nm. The samples were examined by secondary-ion mass spectrometry, and uniform distribution of elements in the film layer was observed. Surface morphology, electrical polarization, and mechanical properties were investigated by atomic force microscope, piezoelectric force microscopy, and force modulation microscopy. The values of current in the near-surface layer varied in the range of ±80 pA when a potential of 5 V was applied. Chemical analysis was performed by...
A fresh insight into the non-linear vibration of double-tapered atomic force microscope cantilevers by considering the Hertzian contact theory
, Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 233-247 ; 09544062 (ISSN) ; Zohoor, H ; Sharif University of Technology
2011
Abstract
The non-linear flexural vibration for a double-tapered atomic force microscope cantilever has been investigated by using the Timoshenko beam theory. In this article, the normal and tangential tip-sample interaction forces are found from the Hertzian contact model, and the effects of the contact position, normal and lateral contact stiffness, height of the tip, thickness of the beam, angle between the cantilever and the sample surface, and breadth and height taper ratios on the non-linear frequency to linear frequency ratio have been studied. The differential quadrature method is employed to solve the non-linear differential equations of motion. The results show that the softening behaviour...