Loading...
Search for: safaee--reza
0.139 seconds

    Preparation of Mg-doped TiO2 Nanoparticles for Dye-sensitized Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Safaee, Mahtab (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cell (DSSCS) is the third-generation of solar cells based on semiconductors formed between a photo sensitized anode and counter cathode which make a photo electrochemical system. They haven’t been commercially marketed due to their lower efficiency than the previous generations. In order to achieve the higher efficiency, the electron injection and light absorption must be increased. One way to increase electron injection is doping the semiconductor with an external ion to reduce lattice band gap. In this work, we made powder and Nano-structured film of titanium dioxide doped with various molar ratios of Mg by the sol-gel process. The effect of Mg:Ti molar ratio on... 

    Design and Modeling of the Cement Setting Time

    , M.Sc. Thesis Sharif University of Technology Safaee, Reza (Author) ; Shad, Saeed (Supervisor)
    Abstract
    Cementing plays a crucial role in ensuring the long-term integrity of oil and gas wells, geothermal wells, and geologic sequestration (GS). The productivity of the well is directly impacted by the quality of cementing operations throughout its lifecycle, spanning drilling, production, and abandonment phases. This thesis focuses on modeling cement setting under varying pressure and temperature conditions within wells. It aims to accurately estimate the thickening time of cement slurry, and analyze the influence of thermodynamic factors like pressure, temperature, and heat generated by hydration reactions on the cement setting process through laboratory investigations. The study also delves... 

    Modeling Neural Systems with a Group of Dissipative Rotators

    , M.Sc. Thesis Sharif University of Technology Safaee Sirat, Amin (Author) ; Moghimi-Araghi, Saman (Supervisor)
    Abstract
    Neural systems are the threshold ones. It means if the electrical potential passed through a specific amount then they could spike and cause the activity of other cells. The models that really mimic the action of neurons are usually complicated and are not suitable when you put them on a network to study the collective behavior of the neurons. Simple threshold models have been designed for such purposes. One on most studied ones is the ’integrate and fire’ model, in which cells integrate the inputs until the threshold potential and then spike. usually, a network of these objects are simulated and different properties of such network are investigated.However, this model has some shortcomings... 

    Small-scale building load forecast based on hybrid forecast engine

    , Article Neural Processing Letters ; 2017 , Pages 1-23 ; 13704621 (ISSN) Mohammadi, M ; Talebpour, F ; Safaee, E ; Ghadimi, N ; Abedinia, O ; Sharif University of Technology
    2017
    Abstract
    Electricity load forecasting plays an important role for optimal power system operation. Accordingly, short term load forecast (STLF) is also becoming an important task by researchers to tackle the mentioned problem. As a consequence of the highly non-smooth and volatile trend of the load time series specially in building levels, its STLF is even a more complex procedure than that of a power system. For this purpose, in this paper we proposed a new prediction model based on a new feature selection algorithm and hybrid forecast engine of enhanced version of empirical mode decomposition named sliding window EMD bundled with an intelligent algorithm. The proposed forecast engine is combined... 

    Small-Scale building load forecast based on hybrid forecast engine

    , Article Neural Processing Letters ; Volume 48, Issue 1 , 2018 , Pages 329-351 ; 13704621 (ISSN) Mohammadi, M ; Talebpour, F ; Safaee, E ; Ghadimi, N ; Abedinia, O ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Electricity load forecasting plays an important role for optimal power system operation. Accordingly, short term load forecast (STLF) is also becoming an important task by researchers to tackle the mentioned problem. As a consequence of the highly non-smooth and volatile trend of the load time series specially in building levels, its STLF is even a more complex procedure than that of a power system. For this purpose, in this paper we proposed a new prediction model based on a new feature selection algorithm and hybrid forecast engine of enhanced version of empirical mode decomposition named sliding window EMD bundled with an intelligent algorithm. The proposed forecast engine is combined... 

    Two-step sintering of ZnO varistors

    , Article Solid State Ionics ; Volume 190, Issue 1 , 2011 , Pages 99-105 ; 01672738 (ISSN) Maleki Shahraki, M ; Shojaee, S. A ; Faghihi Sani, M. A ; Nemati, A ; Safaee, I ; Sharif University of Technology
    2011
    Abstract
    In this research, effects of two-step sintering parameters, such as first and second step sintering temperatures (T1 and T2, respectively) and soaking time in the second step, on microstructure and electrical properties of ZnO varistors have been studied. In addition, slow rate of grain growth in the second step of sintering has also been investigated. Near fully dense (higher than 99%) and sub-micron grain size (1-0.75 μm) ZnO varistors have been fabricated by different two-step sintering cycles. Decreasing T1 and T2 result in longer necessary time in the second step to reach near full density with smaller final grain size. The superior electrical properties of varistors (VB: 2050-1022 V/mm... 

    Ultra-high voltage SnO2 based varistors prepared at low temperature by two-step sintering

    , Article Journal of Alloys and Compounds ; Volume 805 , 2019 , Pages 794-801 ; 09258388 (ISSN) Maleki Shahraki, M ; Delshad Chermahini, M ; Alipour, S ; Mahmoudi, P ; Safaee, I ; Abdollahi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this research, full density, single phase microstructure (in the XRD and SEM detection limits), and fine-grained SnO2 varistors with an average grain size of 0.65 μm was acquired at low temperature by the two-step sintering technique. The sintering temperature was successfully decreased from 1300 °C in the normal sintering to 1150 °C and 1100 °C of respectively the first and the second stage in the two-step sintering. The mechanism of grain growth suppression of the two-step sintered samples was discussed and it was suggested that in addition to triple point junction, solute drag and/or nano-secondary phases contribute to cease the grain growth. These SnO2 varistors exhibited ultra-high... 

    An experimental investigation into the melting of phase change material using Fe3O4 magnetic nanoparticles under magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 1 , 2021 , Pages 381-392 ; 13886150 (ISSN) Safaee Sadegh, S ; Aghababaei, A ; Mohammadi, O ; Jafari Mosleh, H ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The low thermal conductivity of phase change materials has resulted in prolonged melting and freezing processes (charge and discharge) in these materials. This problem has limited the application of these materials in the field of thermal energy storage. In the present study, the effects of adding Fe3O4 magnetic nanoparticles at various concentrations as well as applying the magnetic field on the melting process of paraffin as phase change material have been experimentally studied. Thereupon, a cubic chamber in which the left wall applied a constant heat flux was used. At the optimum concentration of nanoparticles (1 mass%), the constant magnetic field with the intensities of 0.01 T and... 

    A misbehavior‐tolerant multipath routing protocol for wireless Ad hoc networks [electronic resource]

    , Article International Journal of Research in Wireless Systems (IJRWS) ; Vol. 2, Issue 9, pp. , Sep. 2013 Sedghi, H. (Haniyeh) ; Pakravan, Mohammad Reza ; Aref, Mohammad Reza ; Sharif University of Technology
    Abstract
    Secure routing is a major key to service maintenance in ad hoc networks. Ad hoc nature exposes the network to several types of node misbehavior or attacks. As a result of the resource limitations in such networks nodes may have a tendency to behave selfishly. Selfish behavior can have drastic impacts on network performance. We have proposed a Misbehavior-Tolerant Multipath Routing protocol (MTMR) which detects and punishes all types of misbehavior such as selfish behavior, wormhole, sinkhole and grey-hole attacks. The protocol utilizes a proactive approach to enforce cooperation. In addition, it uses a novel data redirection method to mitigate the impact of node misbehavior on network... 

    Analysis and data-based reconstruction of complex nonlinear dynamical systems : using the methods of stochastic processes

    , Book Rahimi Tabar, M. Reza
    Springer International Publishing  2019
    Abstract
    This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation?
    Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data.
    The book provides an overview of methods that have been developed for the analysis of... 

    Fabrication and Study of Mechanical Behavior of in Situ Microfibrillar- Reinforced Composites of Polypropylene/Recycled Poly (Ethylene Terephthalate)Toughened with Rubber Particles

    , M.Sc. Thesis Sharif University of Technology Motahari, Tayebeh (Author) ; Bagheri, Reza (Supervisor) ; Alizadeh, Reza (Supervisor)
    Abstract
    The use of polymers is increasing day by day due to low density, reasonable price and ability to produce different products. On the other hand, the accumulation of polymer wastes in nature is one of the environmental concerns in today's world, which is mainly due to the widespread use of polymers in the packaging industry and disposable applications. In order to solve this problem, recycling is recommended as the most appropriate and economical solution. Because in addition to consuming polymer waste, it also saves energy and reduces carbon footprint.Polyethylene terephthalate (PET) is one of the polymeric materials which; It has a special place in the packaging industry and is widely used... 

    Characterization of Mechanical Properties of Polymer Nanocomposites with Spherical Inhomogeneities

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Taha (Author) ; Naghdabadi, Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    The improved properties of nanocomposites are not achievable with conventional composites. Scale effect is one the most important parameters in the physical and mechanical properties of polymeric nanocomposites. One of the physical phenomena, which can be related to the scale effect, is the very large interface between the nanoparticles and the polymeric matrices. Motional behavior and conformation of polymeric chains change near the nanoparticles surfaces. Due to high interface of the nanoparticles with the polymeric matrices the amount of these types of changes in the polymeric chains are so large that can change the physical and mechanical properties of polymeric nanocomposites. In this... 

    On small uniquely vertex-colourable graphs and Xu's conjecture [electronic resource]

    , Article Discrete Mathematics ; Volume 223, Issues 1–3, 28 August 2000, Pages 93–108 Daneshgar, A. (Amir) ; Naserasr, Reza ; Sharif University of Technology
    Abstract
    Consider the parameter Λ(G) = |E(G)| - |V(G)|(k - 1) + (k2) for a k-chromatic graph G, on the set of vertices V(G) and with the set of edges E(G). It is known that Λ(G)≥0 for any k-chromatic uniquely vertex-colourable graph G (k-UCG), and, S.J. Xu has conjectured that for any k-UCG, G, Λ(G) = 0 implies that cl(G) = k; in which cl(G) is the clique number of G. In this paper, first, we introduce the concept of the core of a k-UCG as an induced subgraph without any colour-class of size one, and without any vertex of degree k - 1. Considering (k, n)-cores as k-UCGs on n vertices, we show that edge-minimal (k, 2k)-cores do not exist when k ≥ 3, which shows that for any edge-minimal k-UCG on 2k... 

    Molecular Dynamics Simulation of Nano-Diamond Synthesis by Shock Wave

    , Ph.D. Dissertation Sharif University of Technology Mahnama, Maryam (Author) ; Naghdabadi, Reza (Supervisor) ; Movahhedy, Mohammad Reza (Co-Advisor)
    Abstract
    In the field of high-pressure material science, diverse carbon systems under pressure have been intensively studied with interest in synthesizing new phases. A variety of these synthetic phases which have met various applications in today technology are called the amorphous diamond. The pressure-induced structural transition of carbonaceous material to amorphous diamond is realized by shock compression and rapid quenching. The shock compression and rapid quenching generate the high pressure (several GPa) and the temperature (several hundred K) in a fraction of a microsecond.Since the mechanical and electrical properties of the synthetic diamond are severely sensitive to the atomic structure,... 

    An Experimental Study of the Effects of Sweep Wing on the Boundary Layer of 2D Wing

    , M.Sc. Thesis Sharif University of Technology Tabrizian, Arshia (Author) ; Soltani, Mohammad Reza (Supervisor) ; Davari, Ali Reza (Co-Advisor)
    Abstract
    The behavior of boundary layer under the effect of the sweep angle is considered. The measurements were performed by a pitot tube rake. Three models with various sweep angels at angles of attack -2, 0 and 2 degree were tested. Both tip and root of all wings were closed by flat plates in order to prevent the flow to roll-up. However the flow field on the wing was still three-dimensional because of the sweep angle. The velocity on the wing has two components; longitudinal and lateral. The cross flow emerges due to the non-equilibrium of pressure and centrifugal forces. The velocity profiles showed that the magnitude of cross flow was stronger near the leading edge of the wing. The cross flow... 

    Synthesis of Antibiotic-eluting Chitosan-based Composite Coating by Electrophoretic Deposition for Bone Implants

    , M.Sc. Thesis Sharif University of Technology Bakhshi, Zahra (Author) ; Simchi, Abdol Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Drug-eluting bone implant coatings is a new era that has gained a lot of attention in recent years. In this matter, drug is loaded in the coating and local and targeted release of the drug results in preventing the side effects of implantation and increasing the healing process of the patient. The aim of this project was to synthesis the antibiotic eluting chitosan-based composite using electrophoretic deposition for bone implant coating. By using electrophoretic deposition chitosan and chitosan-bioglass composite coatings were synthesized. Then the probability of loading of drug into coating by using electrophoretic deposition was evaluated and by using this process chitosan and... 

    Solving High-Dimensional Differential Equations Using Machine Learning

    , M.Sc. Thesis Sharif University of Technology Saffarieh, Pooya (Author) ; Razvan, Mohammad Reza (Supervisor) ; Moghadasi, Reza (Co-Supervisor)
    Abstract
    The numerical solution of differential equations in high dimensions has always been a challenge and has been associated with various computational difficulties. These equations appear naturally in a variety of problems such as financial mathematics, control, and physics, and their optimal solution with high accuracy and speed can open new windows on new applications. Conventional methods such as Finite element and finite difference method in high dimensions lose their efficiency, which is a barrier to fast and accurate calculation of these equations. In this dissertation first, we review some theoretical and practical aspects of deep neural networks and then we try to examine the recent... 

    Topological Defects in Confined Nematics by Planar Anchoring

    , M.Sc. Thesis Sharif University of Technology Seyed Nejad, Reza (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Mozaffari, Mohammad Reza (Supervisor)
    Abstract
    Confining nematic liquid crystal between two curved boundary conditions while the nematic molecules have a degenerate planar anchoring leads to complex and beautiful textures of molecular disparagement(defect) in the bulk and on the surfaces. Such the liquid crystal shells are made with double-emulsion techniques in microfluidic devices have provided applications for micro-scale colloidal linkers.In this work, we have numerically minimized the elastic energy in one-constant approximation in present of Fournier’s degenerate surface potential with finite element method. The nematic shell is confined between two spherical surfaces that we have studied the final energies and their related... 

    Coarse Grained Molecular Dynamics Simulation of DNA Nanomechanics

    , Ph.D. Dissertation Sharif University of Technology Fathizadeh, Arman (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Khoei, Amir Reza (Co-Advisor)
    Abstract
    DNA is the most important biological molecule which contains all the genetic information of living organisms. The mechanical behavior of this molecule has a significant role on its functions. In this study, we introduce a model to for DNA nanomechanics. This model is called rigid base-pair chain in which every base pair is considered as a rigid object. The base-pairs only interact with their nearest neighbors via a harmonic potential. We have used this model to study the nanomechanical behavior of the DNA such as its bending, twisting, and stretching elasticity. Also the model was successful to predict the structure of DNA minicircles with extra amount of twist. After that we used the model... 

    In Situ Synthesis of Nanorod Hydroxyapatite Reinforced Polycaprolactone Nanocomposite for Bone Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Moeini, Saeed (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Simchi, Abdol Reza (Supervisor)
    Abstract
    Hydroxyapatite is the most substantial inorganic constituent of bone tissue which displays splendid biocompability and bioactivity. Nevertheless, its mechanical properties is not utmost appropriate for a bone substitutes. Therefore, it is used to improve the mechanical properties of polymer matrix composite scaffolds. In the present work polycaprolactone as a polymeric matrix was employed to fabricate hydroxyapatite-polycaprolactone biocomposite scaffolds via in situ route. Solvothermal method was employed to synthesize in situ hydroxyapatite in polymer matrix. Porous scaffolds were fabricated via freeze-drying/porogen leaching. Physical, mechanical (compressive module and compressive...