Loading...
Search for: sahraei-khanghah--n
0.085 seconds

    Idle time and gelation behavior in gelcasting process of PSZ in acrylamide system

    , Article Ceramic Transactions, 31 May 2009 through 5 June 2009 ; Volume 212 , JUL , 2010 , Pages 105-113 ; 10421122 (ISSN) ; 9780470876466 (ISBN) Sahraei Khanghah, N ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Gelcasting is a novel forming method in fabricating complex three dimensional ceramic parts, and has many parameters and characteristics required to be specified. Up to now, few articles have been published on determination of the idle time of gelation precisely. In this work the chemorheology of gelation in aqueous solution of acrylamide and N, N′ methylenebisacrylamide monomer, and zirconia (PSZ) suspensions of this solution was investigated. As the viscosity of gel system increases abruptly in gelation point, idle time can be determined precisely by measurement of viscosity against time. Idle time can also be determined through temperature measurement against time since the reaction of... 

    Effect of power randomization on saturation throughput of IEEE 802.11 WLAN

    , Article IEEE International Conference on Communications, 23 May 2010 through 27 May 2010, Cape Town ; 2010 ; 05361486 (ISSN) ; 9781424464043 (ISBN) Sahraei, S ; Ashtiani, F ; Sharif University of Technology
    2010
    Abstract
    In this paper, we evaluate the saturation throughput for an IEEE 802.11 based wireless network considering capture effect at the receiver, while nodes transmit with random powers. In this respect, we consider a scenario consisting of a specific number of wireless nodes. Then, we derive the transmission as well as collision probabilities with respect to the perfect capture effect. In order to maximize the saturation throughput we set up an optimization problem and obtain how to compute optimum values for the probabilities corresponding to different power levels. By providing the numerical results, we deduce that power randomization may lead to a significant improvement in saturation... 

    Plant Layout Problem by Considering Aisle Structure

    , M.Sc. Thesis Sharif University of Technology Sahraei, Pardis (Author) ; Eshghi, Kourosh (Supervisor)
    Abstract
    The layout problem is directly related to the material handling system; therefore, these two concepts are always being considered together. The main criterion for evaluating the layout in the objective function, is the cost of controlling and moving the materials. In order to calculate the material handling cost, it is necessary to provide an accurate information on the distance between departments, number of goods transported, and the cost of moving a unit of goods per unit of distance; therefore, accurate calculation of the distance between departments is an issue of paramount importance. In the literature, the distance between the departments is measured in three ways: Euclidean distance,... 

    Experimental study on the removal of Ca(II) from aqueous solution using a bulk liquid membrane with facilitated transport mechanism

    , Article Chemical Engineering Research and Design ; Volume 191 , 2023 , Pages 353-363 ; 02638762 (ISSN) Khanghah, F. A ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Institution of Chemical Engineers  2023
    Abstract
    Calcium ion is one of the scale-forming cations in water, as it can readily produce sulfate and carbonate scales. Liquid membranes eliminate the equilibrium constraints of liquid-liquid extraction by integrating extraction and stripping processes into one unit and therefore offer tremendous potential for removing various metal ions from aqueous solutions. In this study, the ability of a bulk liquid membrane (BLM) containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as a carrier to remove Ca(II) ions from aqueous solutions was explored. D2EHPA showed good efficacy and significantly facilitated transport of Ca(II) through the BLM. The transport mechanism by D2EHPA was investigated using pH... 

    Experimental Study of Flow Pattern, Relative Permeability and Saturation of Three Phase Flow

    , M.Sc. Thesis Sharif University of Technology Zeinali Khanghah, Mohammad Hossein (Author) ; Shad, Saeed (Supervisor)
    Abstract
    Today, the Oil industry, much progress has been made in terms of increasing the productivity of reservoirs. In this method, generally one or more fluids are injected into wells to help, extract more oil from the reservoir. Knowledge of the main parameters in this flow of two or three phase fluid in the reservoir is most important. If fractured reservoirs are studied, the multiphase flow are much more complex and require more information about that. Unfortunately, due to the complexity of fractured reservoirs and fluid flow within them, little research has been done on them. The studies about two or three phase flow in fractured reservoirs are classified in two groups, modeling and laboratory... 

    Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm

    , Article Energy ; Volume 59 , 2013 , Pages 147-156 ; 03605442 (ISSN) Sahraei, M. H ; Farhadi, F ; Boozarjomehry, R. B ; Sharif University of Technology
    2013
    Abstract
    In this paper sustainability analysis (exergy, environmental and economic) and multi-objective optimization for an aromatic plant are provided and interactions between decision variables are discussed. Environmental evaluation shows that the cancer human toxicity and global warming are the most important environmental concerns and the weight of EIs (environmental impacts) are mainly due to process wastes. The optimizations results demonstrate parameters like reactor temperature have a wide range in the optimizations while some variables, such as extraction unit variables have the same value. Utility EI reduction occurred in economic and exergy optimizations rather than environmental... 

    Real-time parameter identification for highly coupled nonlinear systems using Adaptive Particle Swarm Optimization

    , Article Mechanika ; Volume 86, Issue 6 , 2010 , Pages 43-49 ; 13921207 (ISSN) Ranjbar Sahraei, B ; Nemati, A ; Safavi, A. A ; Sharif University of Technology
    2010
    Abstract
    The In this paper, an Adaptive Particle Swarm Optimization (APSO) method is proposed for parameter identification of highly coupled electromechanical systems. Using some modifications on the APSO, better computational efficiency is achieved. In this way, the speed of real-time identification procedure is improved. In addition, to show the effectiveness of the proposed method, it is implemented on a real ball on plate setup and its dynamic model is achieved. Both the simulation and the experimental results show that parameter identification of the proposed algorithm is significantly improved when compared with other existing identification methods based on the traditional PSO and Genetic... 

    Adaptive fuzzy sliding mode control approach for swarm formation control of multi-agent systems

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 5 , 2010 , Pages 485-490 ; 9780791849194 (ISBN) Ranjbar Sahraei, B ; Nemati, A ; Farshchi, M ; Meghdari, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, an adaptive control scheme for multi-agent formation control is proposed. This control method is based on artificial potential functions integrated with adaptive fuzzy sliding mode control technique. We consider fully actuated mobile agents with completely unknown dynamics. An adaptive fuzzy logic system is used to approximate the unknown system dynamics. Sliding Mode Control (SMC) theory is used to force agents' motion to obey the dynamics defined by the simple inter-agent artificial potential functions. Stability proof is given using Lyapunov functions, which shows the robustness of controller with respect to disturbances and system uncertainties. Simulation results are... 

    Reducing occupant injury in frontal crashes for a low-floor city bus

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 2006 , 2006 , Pages 113-120 Sahraei Esfahani, E ; Darvish, K ; Parnianpour, M ; Bateni, A ; Sharif University of Technology
    2006
    Abstract
    In this research, the effect of beam buckling in a predefined direction is used to reduce occupant injuries in frontal crashes of an ultra-low-floor (ULF) city bus. In ULF buses, the floor structure consists of several longitudinal long beams, which in case of a frontal crash may buckle due to the axial impact. The direction of rotational acceleration of the driver seat due to buckling is highly affected by the position of the driver seat. A finite element model of an ULF bus was developed using LS-Dyna. The driver model, a Hybrid III 50 th male dummy with deformable jacket and abdomen, was restrained to the seat with a 3-point belt. An Elastic-Plastic material model was used for the bus... 

    A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems

    , Article IEEE Transactions on Industrial Electronics ; Volume 59, Issue 8 , 2012 , Pages 3124-3134 ; 02780046 (ISSN) Ranjbar-Sahraei, B ; Shabaninia, F ; Nemati, A ; Stan, S. D ; Sharif University of Technology
    IEEE  2012
    Abstract
    In this paper, a novel decentralized adaptive control scheme for multiagent formation control is proposed based on an integration of artificial potential functions with robust control techniques. Fully actuated mobile agents with partially unknown models are considered, where an adaptive fuzzy logic system is used to approximate the unknown system dynamics. The robust performance criterion is used to attenuate the adaptive fuzzy approximation error and external disturbances to a prescribed level. The advantages of the proposed controller can be listed as robustness to input nonlinearity, external disturbances, and model uncertainties, and applicability on a large diversity of autonomous... 

    Experimental Study and Optimization of Calcium Ion Extraction Using Emulsion Liquid Membrane with Isotope Separation Perspective

    , Ph.D. Dissertation Sharif University of Technology Abdollahzadeh Khanghah, Fariba (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The aim of this dissertation is to investigate the extraction of calcium ions using an emulsion liquid membrane (ELM) with an isotopic perspective. Considering the importance of ion extraction as a preliminary step to isotope separation, the factors affecting the extraction of Ca(II) ions in the ELM process were investigated and optimization of the process was performed in this study. Dicyclohexano-18-crown-6 (DC18C6) was used as the carrier due to isotopic considerations. However, its extractability for calcium ions is limited. In order to address this issue, it is possible to introduce an organic acid, specifically di-(2-ethylhexyl) phosphoric acid (D2EHPA), into the membrane phase. This... 

    Real-time trajectory generation for mobile robots

    , Article 10th Congress of the Italian Association for Artificial Intelligence, AI IA 2007, Rome, 10 September 2007 through 13 September 2007 ; Volume 4733 LNAI , 2007 , Pages 459-470 ; 03029743 (ISSN); 9783540747819 (ISBN) Sahraei, A ; Manzuri, M. T ; Razvan, M. R ; Tajfard, M ; Khoshbakht, S ; Sharif University of Technology
    Springer Verlag  2007
    Abstract
    This paper presents a computationally effective trajectory generation algorithm for omni-directional mobile robots. This method uses the Voronoi diagram to find a sketchy path that keeps away from obstacles and then smooths this path with a novel use of Bezier curves. This method determines velocity magnitude of a robot along the curved path to meet optimality conditions and dynamic constrains using Newton method. The proposed algorithm has been implemented on real robots, and experimental results in different environments are presented. © Springer-Verlag Berlin Heidelberg 2007  

    Experimental Study and Modeling of Saturation Molality of Inorganic Salts in formation water

    , M.Sc. Thesis Sharif University of Technology Sahraei, Sadegh (Author) ; Taghikhani, Vahid (Supervisor) ; Ghotbi, Sirous (Supervisor) ; Yousefi, Leyla (Co-Advisor)
    Abstract
    Saturation molality for a number of single and mixed aqueous electrolyte solutions containing NaCl, Na2CO3, and K2SO4, was measured at atmospheric pressure over a wide range of temperature. In order to check the repeatability of the experimental data, the experiments were replicated three times and average of the results was considered as final saturation molality. Experimental data of saturation molality for single electrolyte solutions were correlated using the modified UNIFAC–Dortmund model to account for the shortrange interaction. Binary interaction parameters, between water molecules and ionic species were also reported. For the long-range interactions between the ionic species in... 

    Thermodynamics and Kinetics Study of Gas Hydrates in Presence of Ionic Liquids

    , M.Sc. Thesis Sharif University of Technology Sahraei, Vahab (Author) ; Ghotbi, Cyrus (Supervisor) ; Taghikhani, Vahid (Supervisor) ; Nazari, Khodadad (Supervisor)
    Abstract
    Gas hydrates are ice-like clathrate compounds. Methane, carbon dioxie and natural gas compounds can form gas hydrate and plug pipelines, in order to preventing of gas hydrate formation, inhibitors like electrolytes are added to the natural gas pipelines. In this work a model proposed to predict the hydrate formation conditions in presence of some inhibitors such as NaCl, KCl, NaBr, KBr, [BMIM][BF4] and [BMIM][Br]. So a new equation of state that can be applied to both electrolyte and associating solutions called GV-SAFT-MSA is developed. Two dialkylimidazolium ionic liquids [BMIM][BF4] and [BMIM][MS] have been investigated for their potential application as novel gas hydrate inhibitors. The... 

    Recent activities in science and technology and the progress of women in physics in the last three years in Iran

    , Article AIP Conference Proceedings, Stellenbosch ; Volume 1517 , 2013 , Pages 108-109 ; 0094243X (ISSN); 9780735411388 (ISBN) Izadi, D ; Azad, M. T ; Mahmoudi, N ; Izadipanah, N ; Eshghi, N ; Sharif University of Technology
    2013
    Abstract
    For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and... 

    Lead-free MAGeI3 as a suitable alternative for MAPbI3 in nanostructured perovskite solar cells: a simulation study

    , Article Environmental Science and Pollution Research ; Volume 30, Issue 19 , 2023 , Pages 57032-57040 ; 09441344 (ISSN) Mehrabian, M ; Akhavan, O ; Rabiee, N ; Afshar, E. N ; Zare, E. N ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2023
    Abstract
    The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η)... 

    Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells

    , Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 Pazoki, M ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
    2014
    Abstract
    Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2... 

    Analyzing factors effective on the development of relationship commitment

    , Article Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012, 16 July 2012 through 19 July 2012 ; Volume 1 , July , 2012 , Pages 398-404 ; 1601322186 (ISBN) ; 9781601322180 (ISBN) Dehdashti, Y ; Lotfi, N ; Karami, N ; Sharif University of Technology
    2012
    Abstract
    Due to the important role of commitment and trust in the relationship marketing, the factors which can directly result in a committed relationship along with the factors which can influence the commitment through influencing trust, according to the model of commitment and trust by (Morgan & Hunt, 1994) have been introduced and their level of importance has been investigated here. The article uses fuzzy cognitive maps (FCMs) in the proposed model to find the most important paths leading to relationship commitment. The FCM analyzes the responses of a group of 30 people including general practitioners in dentistry, managers of dental departments in some of the public clinics and hospitals who... 

    Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) Sharifi, N ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance... 

    Monolithic dye sensitized solar cell with metal foil counter electrode

    , Article Organic Electronics ; Volume 57 , June , 2018 , Pages 194-200 ; 15661199 (ISSN) Behrouznejad, F ; Taghavinia, N ; Ghazyani, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Monolithic dye-sensitized solar cells are conventionally fabricated using carbon composite layer as the counter electrode. In the current research, the brittle carbon composite layer is replaced with a metal foil, aiming to decrease the device series resistance and using less catalyst material in counter electrode. This metallic structure has also an advantage of mechanical strength and decreases the fabrication complexity. The counter electrode is prepared by electrodepositing Cr film followed by electrodepositing Pt nanoparticles on a metal foil. As the porous spacer layer, different composite layers of SiO2, TiO2, and Al2O3 are investigated and the best results are obtained for TiO2...