Loading...
Search for: saidi--mohammad-saeed
0.2 seconds

    Numerical and One Dimensional Modeling of Cardiovascular System Along with Lumped Parameter Modeling of the Heart

    , M.Sc. Thesis Sharif University of Technology Salehi, Sarah (Author) ; Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Saeed (Co-Advisor)
    Abstract
    Cardiovascular diseases are major causes of morbidity and mortality in the world. In order to prevent or reduce these diseases, engineers and scientists are concerned to find solutions. In this way, it is important to know about the blood flow and its changes in various diseases. By using simulation methods, diagnosis can be very easier. In this study, a system of arterial tree consisting of 93 systemic arteries along with 7 pulmonary arteries is considered. In other words, this model contains 100 systemic and pulmonary arteries that encompass central and peripheral arteries. Other parts of this model are cerebral vasculature and coronary arteries. Cerebral arteries, also called circle of... 

    Modeling of Two Phase Flow in Porous Media with Heat Generation

    , Ph.D. Dissertation Sharif University of Technology Taherzadeh Fard, Morteza (Author) ; Saidi, Mohammad Saeed (Supervisor) ; Ghofrani, Mohammad Bagher (Co-Advisor)
    Abstract
    The main purpose of this work is investigation of coolability of a boiling debris bed. The main governing equations are derived using volume averaging technique. From this technique some specific interfacial areas between phases are appeared and proper relations for modeling these areas are proposed. Using these specific areas, a modification for the Tung/Dhir model in the annular flow regime is proposed. The proposed modification is validated and the agreements with experimental data are good. Finally, governing equations and relations are implemented in the THERMOUS program to model two-phase flow in the debris bed in the axisymmetric cylindrical coordinate. Two typical configurations... 

    Experimental Investigation of Nano Particle Effect on Heat Transfer in a Micro Heat Exchanger

    , M.Sc. Thesis Sharif University of Technology Jafarpoor Chekab, Hamideh (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Modern microelectronic systems generate a large amount of heat which must be transferred out of the system without excessive temperature rise. Conventional forced air convection and microchannel cooling plates have reached their performance limits Nanofiuids are proposed as an innovative way to solve the problem. A nanofiuid is nanoscale solid particles dispersed in a traditional heat transfer liquid. Some studies show an anomalous increase in the thermal conductivity for stationary nanofiuids. However, there are only few previous studies on the convection heat transfer rate and viscosity of nanofiuids. Both convection and stationary measurements of the thermal conductivity are widely... 

    Introducing a New Boundary Condition Method in Dissipative Particle Dynamics and Simulation of Dilute Polymer Solution

    , M.Sc. Thesis Sharif University of Technology Nobari, Babak (Author) ; Saidi, Mohammad Saeid (Supervisor) ; Saidi, Mohammad Hassan (Supervisor) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Dissipative particle dynamics (DPD) is an emerging mesoscopic computational method in which the interparticle forces arise because of coarse-graining at the molecular level. In the asymptotic limit of large length scales, the governing equations of continuum are reproduced, as demonstrated in this work. This method of simulation has the capability of simulating larger order of time and space in compare with dynamic molecular method. One of the important applications of DPD is simulating the dilute polymer solution. In this project, we developed a general code to simulate dilute polymer behavior which consists of polymeric forces and different types of usual DPD boundary conditions. This code... 

    Fabrication of Ferrofluidic Micropump

    , M.Sc. Thesis Sharif University of Technology Ashouri, Majid (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Said (Supervisor) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    In this project, two Ferrofluidic micropumps that do not need any mechanical moving parts are presented. These micropumps are including simple microchannels containing magnetic fluid plugs that are used as flow actuator and the on/off valve. Using external magnetic field actuation in this type of micropumps, the magnetic fluid would have continuous motion in a channel with micrometer dimensions that would provide the main fluid to be pumped. Although the plug of magnetic fluid has surface contact with operative fluid, but considering its specific features, it would not compine with the pumping fluid. These micropumps may be used to pump the fluids or gases. The outcomes of the investigation... 

    Analytical and Experimental Investigation of Spray Flame Front in Bidirectional Vortex Flow

    , Ph.D. Dissertation Sharif University of Technology Dehghani, Saeed Reza (Author) ; Saidi, Mohammad Hassan (Supervisor) ; Mozafari, Ali Asghar (Supervisor) ; Ghafourian, Akbar (Supervisor)
    Abstract
    Vortex engine has shown to be a credible substitute in thermal power and aerospace industries mainly due to their advantages such as better mixing, improved combustion, and considerable cooled walls of combustion chamber. The engine geometry and tangential inlet oxidizer create inner and outer vortices rotating in the same angular direction. The inner vortex moves from head to the end of engine in the axial direction and outer vortex moves in the opposite direction. In the vortex engine, vortices affect spray droplets and force them to have a spiral path and apply a centrifugal force on the droplets to push them towards sidewall. Also axial relative velocity of droplets and flow filed act as... 

    One Dimensional and Two Dimensional Numerical Investigation of Micro Scale Combustion

    , M.Sc. Thesis Sharif University of Technology Irani Rahaghi, Abolfazl (Author) ; Saidi, Mohammad Said (Supervisor) ; Saidi, Mohammad Hasan (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    In this paper, a one-dimensional and two-dimensional numerical approach is used to study the effect of various parameters such as micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry (9 species and 19 reactions) is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system (A-D-R) that leads to two stiff systems of PDEs, which can not be solved by conventional Computational Fluid Dynamics (CFD) methods. In the present work, Strang splitting method, which is suitable for nonlinear stiff... 

    Three Dimensional Simulation and Experimental Modeling of Two Stage GM Type Pulse Tube Refrigeration with Double-Inlet

    , M.Sc. Thesis Sharif University of Technology Ashouri, Mahyar (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    There are numerous ways available to achieve low temperatures that cryocoolers might be among the most important of them. In the meantime, the pulse tube refrigerator has a special place due to its simple geometry and not be using any moving parts. This simple property make the pulse tube refrigerator one of the most popular methods to achieve low temperatures. Nowadays, a pulse tube refrigerator is used for cooling in the range of 4 to 123 Kelvin in two form of one-stage and two-stage and up to an approximate power of 1 KW. Today, due to the temperature and the amount of power required for cooling, as well as the time it takes to reach that temperature, this chiller is used in medical,... 

    Modeling of Water Injection into the Desuperheater of Steam Generator

    , M.Sc. Thesis Sharif University of Technology Setareh, Milad (Author) ; Saidi, Mohammad Hasan (Supervisor)
    Abstract
    One of the most important equipment in a power station is desuperheater which its operation has effect on power station performance and efficiency.It is necessary to identify and evaluate the most important factors that have effect on its performance. Using desuperheater cause that the temperature of exhausting superheat steam of boiler decreases to the desired quantity. If the temperature of superheat steam is very high, it will cause burning of superheater pipes that is very dangerous.Steam is used for two purpose of power generating and operational process. Unfortunately these applications have different requirement. In power generating for maximizing efficiency, turbine needs high... 

    Numerical and Analytical Analysis of Electroosmotic Flow of Non-Newtonian Fluids with Temperature Dependent Properties in the presence of Pressure Gradient in a Slit Micro-Channel

    , M.Sc. Thesis Sharif University of Technology Babaie, Ashkan (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    Recent developments in MEMS related areas have increased the demand for practical and novel pumping methods. Utilizing Electroosmotic force for flow generation in microchannels has become really popular recently, because of its reliable operation and control. One of potential applications of MEMS devices is biological and medical analysis which most samples are considered to be non-Newtonian; consequently, thermal transport characteristics of non-Newtonian electroosmotic flow of power-law fluids is investigated in this paper. In this study, thermal and hydrodynamic behavior of non-Newtonian electroosmotic flow of power-law model in a slit microchannel is analyzed. It is assumed that the flow... 

    Mass Transport Analysis of Non-Newtonian Fluids under Combined Electroosmotically and Pressure Driven Flow in Rectangular Microreactors

    , M.Sc. Thesis Sharif University of Technology Yousefian, Zakie (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    In recent two decades, with developments in micro and nano scale fabricating techniques, use of microfluidic systems is increasing in different fields. How to drive fluid is a hard question because of high pressure drop in micro scale. Different methods has been suggested to solve this problem, among which, electroosmotic pump is preferred because of its advantages. One of the main applications of microsystems is in biomechanical devices like microreactors which are usually working with non-Newtonian fluids. The cross section of these devices are most often close to rectangular shape.Therefor, in this study,Hydrodynamic charactristics and mass transport of non-Newtonian fluids under... 

    Gaseous Slip Flow Mixed Convection in Vertical Microducts of Constant but Arbitrary Geometry

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Morteza (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    In the study of heat transfer in micro-channels, free and force convections are two limit cases and these two methods of heat transfer are combined together generally, so to achieve the most accurate informations about the flow field they should be considered in combination. In the first part of the thesis the fully developed slip flow mixed convection in vertical micro-ducts of arbitrary shapes is investigated.Uniform axial heat flux and uniform peripheral wall temperature (H1) is considered. The method considered is analytical-numerical in which the governing equations and three of the boundary conditions are exactly satisfied but the remaining slip boundary condition on the duct wall... 

    Numerical Investigation of Bidirectional Swirl Flow’s Structure in Vortex Engine

    , M.Sc. Thesis Sharif University of Technology Mehrdad, Mohammad (Author) ; Saidi, Mohammad Hasan (Supervisor)
    Abstract
    Numerical investigation of flow field and determination of velocity components in swirl flow are novel and important subjects in combustion chamber of swirl flow. The exact understanding of vortex phenomena and flow structures in vortex engine results in better design and control in terms of stability, geometry, cooling, and combustion efficiency. Although, numerical approaches are computationally complex, they are worthwhile and efficient. The aim of this work is to study the velocity field in a bidirectional swirl flow within the combustion chamber using numerical approaches. The investigation of flow field has been performed in the cold chamber. Four different models (RSM and LES) have... 

    Investigation of the Geometry Effect on Electrokinetic Instability in Microflows

    , M.Sc. Thesis Sharif University of Technology Mohammadzadeh, Alireza (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    Lab-on-a-chip devices have gained a lot of attention in chemical and biomedical analyses during the past two decades. These devices employ microfluidics basics and fundamentals to combine multifold laboratory processes in one single portable chip. The electric field has been often used in most microfluidics applications for the ease of sample control as well as become easily integrated to other chip components. Instabilities in microflows would occur when two fluids of different electric properties are exposed to an adequately strong electric field. Studying these electrokinetic instabilities is not only important for the fundamental studies but also for practical applications in micromixers... 

    Design a Microfluidics System for Drug Testing of Leukemia Patient's Bone Marrow Aspirate

    , M.Sc. Thesis Sharif University of Technology Rahimi, Ali (Author) ; Saidi, Mohammad Said (Supervisor)
    Abstract
    Cancer is one of the most causes of mortality in the world. Leukemia is a type of cancer initiated by the rapid proliferation of blood cells including WBCs, RBCs, and Platelets, that classified into four general types of AML, ALL, CML, and CLL. The main treatment of leukemia is chemotherapy. Because of many problems that patients have with this treatment and not so good results of chemotherapy, we design a microfluidic chip that can perform personalized medicine treatment for leukemia patients.This microchip consists of two main parts, Concentration Gradient Generator (CGG), and cell culture. CGG system is a tree CGG with two inlets and four outlets, which makes a linear concentration of... 

    Design, Fabrication and Testing of an Integrated Microfluidic Platform for Water Quality Testing

    , M.Sc. Thesis Sharif University of Technology Mortazavi, Mohammad Ali (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays environmental issues are of great importance and one of the most paramount issues is the quality of water, because clean water is vital to our existence. Besides different methods for water purification, water quality testing is a useful and needful tool. Traditional methods for determination of water quality parameters are mainly expensive, time consuming and require highly trained staff. In this study, we have described a centrifugal microfluidic platform (Lab- on – a- CD) for simultaneous determination of different physical and chemical parameters including Nitrite, Free Chlorine and pH. All of the processes from sample injection to detection are integrated on this low-cost and... 

    Design and Simulation of a Spiral Based Microfluidic Device for Separation of Circulating Tumor Cells Using Tunable Nature of Viscoelastic Fluid

    , M.Sc. Thesis Sharif University of Technology Nouri, Mohammad Moein (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays, cancer, which has been mentioned as the disease of the century, is the second leading cause of death throughout the world, and its incidence is constantly increasing. Isolation of circulating tumor cells is one of the most critical steps in diagnosing and controlling cancer progression. Due to the rarity of cancer cells compared to other cells in the blood sample, the isolation process requires optimal and high-precision devices. With the advent of inertial microfluidics, the ability to control the particles movement, the processing of blood samples as quickly and accurately as possible, and the viability of cells with a high percentage, introduced microfluidic systems as a... 

    Three Dimensional Fluid-structure Interaction Analysis of Air Flow and Inhaled Particle Transport in Human Pulmonary Alveoli

    , Ph.D. Dissertation Sharif University of Technology Monjezi, Mojdeh (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    The prediction of deposition efficiency of submicron particles in the pulmonary alveoli has received special attention due to its importance for drug delivery systems, and for assessing air pollutants health risks. In this work, the pulmonary alveoli of a healthy human are idealized by a three dimensional honeycomb like configuration and a fluid-structure interaction analysis is performed to study the normal cyclic breathing hydrodynamics. A viscoelastic model is used for the mechanical behavior of alveolar wall tissue. In contrast to previous works in which the inlet flow rate is predefined, in this model a negative pressure is imposed on the outside surface of the alveolus which causes air... 

    Numerical Simulation of Shaking Bioreactors for Cell Culture

    , M.Sc. Thesis Sharif University of Technology Ghahremannezhad, Ali (Author) ; Saidi, Mohammad Said (Supervisor)
    Abstract
    A bioreactor can refer to any device or system constructed on engineering basis and has an active biological medium. This medium includes aerobic and non-aerobic reactions in which organisms and the theire produced substances have the main role. One of the applications of bioreactors is to provide an appropriate medium for animal and plant cell culture and growth. Nowadays many biological processes in high volume scales are carried out in stirred tank bioreactors. In these bioreactors oxygen transfer is usually increased by increasing turbulence which is necessary for mixing nutrients and keeping the homogeneity of the medium. However, there are some limitations for increasing the stirring... 

    Investigation on the Effect of air Inlet on the Behavior of Air-Water two Phase Flow in a Large Diameter Vertical Tube

    , M.Sc. Thesis Sharif University of Technology Kebriaee, Mohammad Hassan (Author) ; Saidi, Hassan (Supervisor)
    Abstract
    Knowledge of Air-water two phase flows is significant to different engineering systems such as chemical reactors and power plant and petrochemical and petroleum industry. One of the most industrial cases of two phase flow is two phase flow in vertical large pipes. Because of gravity, two phase flow in Vertical pipes is different from horizontal pipes. Considering these flows can play a significant role in long-term reliability and safety of industrial systems. There are many parameters that effect on flow characteristics such as length and diameter of pipe and shape and condition of air inlet. Effect of air inlet is on the shape of bubbles and this can effects on flow pattern and another...