Loading...
Search for: salehzadeh--hadi
0.127 seconds

    Design and Implementation of Remote Eye Tracking Device on FPGA and Tolerated to Head Movements

    , M.Sc. Thesis Sharif University of Technology Salehzadeh, Hadi (Author) ; Ghazizadeh, Ali (Supervisor)
    Abstract
    The Eye Tracker is a device that measures eye movements and can obtain user’s gaze point. This device has many applications, including research, functional, diagnosis and treatment. Our goal is implementation of a remote video-oculography based eye tracker that tolerates head movements, so that the user can capture his eye movement data accurately and effortlessly. It is obvious that a good eye tracker device should operate with high frame rate, which means doing large amount of calculations in a short while. We solved this problem with FPGA device by dividing the problem into five parts: eye localization, glint detection, pupil center detection, 2D mapping gaze detection and 3D model gaze... 

    An optimized thermal cracking approach for onsite upgrading of bitumen

    , Article Fuel ; Volume 307 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Kaminski, T ; Husein, M. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Onsite partial upgrading is a promising strategy for facilitating pipeline transportation of bitumen without the use of diluent. In the present work, a one-step treatment using an autoclave is optimized toward upgrading Alberta bitumen of 9.6 API gravity and 925,000 cP viscosity. The thermal cracking process was kept simple in order to maintain an economic and environmental advantage. Optimum conditions entailed 75 min of reaction time at 420 °C, without quenching the reactor. These conditions corresponded to highest centrifuged oil product yield of 73.3 ± 1.1 wt%, viscosity of 34 ± 2 cP and API gravity of 18.9 ± 0.5. H-NMR, CHNS and FTIR measurements revealed thermally cracked asphaltenes... 

    Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 30 , 2020 , Pages 15380-15389 Sadeghian, Z ; Hadidi, M. R ; Salehzadeh, D ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present work, G-TiO2 and G-ODA-TiO2 hybrids were prepared by concurrent surface functionalization and reducing of graphene oxide (GO) using octadecylamine (ODA). The G-TiO2 and G-ODA-TiO2 powders were deposited on the copper surface by electrophoretic deposition (EPD) technique. The wettability of coatings revealed the preferable hydrophobic characteristic of G-ODA-TiO2 compared to G-TiO2 and bare copper with water contact angles of 130°, 101°, and 87°, respectively. The anti-corrosion performance of specimens in a 0.5 M H2SO4 solution was appraised by the potentiodynamic polarization (Tafel analysis), which clearly showed that G-TiO2 and G-ODA-TiO2 coatings can act as a great barrier... 

    Synthesis of gadolinium(III) and samarium(III) complexes of new potentially heptadentate (N4O3) tripodal Schiff base ligands, and a theoretical study

    , Article Polyhedron ; Volume 24, Issue 12 , 2005 , Pages 1478-1486 ; 02775387 (ISSN) Salehzadeh, S ; Nouri, S. M ; Keypour, H ; Bagherzadeh, M ; Sharif University of Technology
    2005
    Abstract
    Two new potentially heptadentate N4O3 Schiff base ligands {N[(CH2)3NCH(2-OH-3,5-t-Bu2C 6H2)]3} (H3L1) and {N[(CH2)3NCH(2-OH-3,5-t-Bu2C6H 2)]2 [(CH2)2-NCH(2-OH-3,5-t-Bu 2C6H2)]} (H3L2) were synthesized and characterized by various spectroscopic methods. The heptadentate N4O3 Schiff bases, H3L1 and H 3L2, were derived from the condensation reaction of two tripodal tetraamine ligands, tris(3-aminopropyl)amine and (2-aminoethyl)-bis(3- aminopropyl)amine with 3 equiv. of 3,5-di-tert-butylsalicylaldehyde, respectively. The neutral gadolinium(III) and samarium(III) complexes, [Ln(L)], of these bulky ligands and also a gadolinium(III) complex of a previously known ligand,... 

    An integrated approach for predicting asphaltenes precipitation and deposition along wellbores

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Taghikhani, V ; Dabir, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Deposition of asphaltenes upon precipitation is a main flow assurance concern, which propelled the development of various experimental and modeling techniques to accurately predict its occurrence. This work develops an integrated approach combining thermodynamic and deposition modules with a multiphase flow simulator to simultaneously model asphaltenes precipitation and deposition in wellbores. The Peng-Robinson equation of state and the modified Miller-Flory-Huggins theory are used to calculate the thermodynamic properties of the oil and asphaltenes precipitation, respectively. The deposition module is based on conservation laws for asphaltenes transport and is linked to the flow simulator... 

    In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Dabir, B ; Taghikhani, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Asphaltenes, and their related issues, have been the focus of many literature investigations. However, in-depth analysis of asphaltenes structure and its relation to asphaltenes stability has been considered by fewer studies. In this research, extensive analysis of the structure of asphaltenes extracted from light, medium, and heavy oils is provided, together with analysis of three subfractions of the medium oil asphaltene having the least, intermediate, and highest solubilities. To this end, elemental analysis, EDX, mass spectroscopy, FTIR, NMR, XRD, and SEM results were collected. Higher hydrogen content and hydrogen/carbon atomic ratio, lower aromatic nature and olefinic entities were... 

    Advances in heuristic signal processing and applications

    , Book ; Chatterjee, Amitava ; Nobahari, Hadi ; Siarry, Patrick
    Springer  2013
    Abstract
    There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a special emphasis on heuristic iterative optimization methods employing modern evolutionary and swarm... 

    Dynamic Modeling and Experimental Study of Asphaltene Deposition in Wellbore Considering Mechanism of Precipitation, Aggregation and Deposition

    , Ph.D. Dissertation Sharif University of Technology Salehzadeh, Marziyeh (Author) ; Ghotbi, Cyrus (Supervisor) ; Dabir, Bahram (Co-Supervisor) ; Taghikhani, Vahid (Co-Supervisor)
    Abstract
    Efforts to identify, predict, and resolve problems linked to asphaltenes and flow assurance have resulted in the development of numerous laboratory and modelling techniques. However, there has been little research on the molecular structure of asphaltenes and how it relates to solubility, stability, aggregation, and deposition behavior. Not only was a thorough structural analysis of asphaltene extracted from three samples of light, medium, and heavy oil performed in this study, but medium oil asphaltene was also fractionated into three sub-fractions based on solubility, with minimum, medium, and maximum solubility, and each subfraction was subjected to a structural analysis. All asphaltene... 

    Development of an Evolutionary Algorithm Based on Surrogate Models to be used in Multi-disciplinary Design Optimization of a Flying Vehicle

    , M.Sc. Thesis Sharif University of Technology Ghoreishi, Mohaddeseh (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In this research, multi-disciplinary design optimization (MDO) of a flying vehicle has been done based on the flight simulation. A meta-heuristic algorithm called Multi-objective Adaptive Real-coded Memetic Algorithm (MARCOMA) has been used for optimization. Since solving a MDO problem is a time consuming process, a RBF neural network has been used in the optimization algorithm as a surrogate model. The new algorithm, called MARCOMA+NN, has been tested with some standard benchmarks. MDO problem has six disciplines consists structure, aerodynamic, propulsion, guidance, control, and fire control. The MDO problem has 31 design variables and two objective functions. The objective functions are... 

    Optimal Design and Real-time Implementation of a Cooperative Guidance Algorithm against a Flying Vehicle

    , M.Sc. Thesis Sharif University of Technology Motie, Mahyar (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    A cooperative aerial system to defense a Ground Station (GS), against an Incoming aerial Targets (IT) is presented. GS is surrounded by given terrains and a group of homogenous Unmanned Aerial Vehicles (UAVs) are employed using a novel online guidance algorithm in a decentralized manner. The proposed algorithm includes loiter, midcourse and terminal phases. During loiter; UAVs follow an optimal circular path. IT is supposed to approach GS along an optimal low altitude trajectory with respect to the terrains. UAVs are informed the initial position and velocity of IT and they are unaware of IT trajectory. Each UAV decides on whether to engage with IT or not, and shares its decision with other... 

    Synthesis and Characterization of PVDF Magnetic Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Hadi, Mina (Author) ; Forounchi, Massoud (Supervisor)
    Abstract
    PVDF (polyvinylidene fluoride) magnetic nanocomposite films were prepared by solution casting using two types of nanomagnetic particles: (i) magnetic nanoparticles synthesized by using an alkaline solution of mixed ferrous/ferric salts along with oleic acid as a coating agent at 70˚C; (ii) Fe3O4 nanoparticles prepared by hydrolysis of aqueous solution of ferrous/ferric salts with potassium hydroxide at room temprature. Scanning electron microscopy (SEM) showed that the PVDF magnetic nanocomposite had a porous structure with Fe3O4 nanoparticles dispersed inside the porous polymer matrix. The presence of crystalline magnetite within the polymer matrix was confirmed by X-Ray diffraction method... 

    Cooperative Search and Localization of Mobile RF Ground Targets, Using a Group of UAVs

    , M.Sc. Thesis Sharif University of Technology Effati, Meysam (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In this project, a method for cooperative search and localization of RF ground moving targets by a group of UAVs is developed. It should be noted that UAVs are just equipped with GPS and directional sensors. Since there is fuel constraint for UAVs, they take fuel from a tanker whenever they require. Moreover, searching method enables the UAVs to see different parts of the desired area with almost uniform distribution. In addition, the proposed approach enables the UAVs to perform a local search with the aim of finding the targets having lost their signal during localization mode. Finally, based upon a fueling decision function the UAVs take turn, approach to the fuel tanker, and start... 

    Attitude Control of a 3DOF Quadrotor Stand Using Intelligent Back-stepping Approach

    , M.Sc. Thesis Sharif University of Technology Abeshtan, Peyman (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In this research a novel intelligent back-stepping control method is developed. This method is robust to sensor noise and external disturbances. In addition, the controller is robust under model uncertainty. This controller does not need precise knowledge of system parameters. This method is based on three methods of: back-stepping control, least squares estimation and a fuzzy compensator. This controller is used to control quadrotor stand witch is like an inverse pendulum. In quadrotor stand modeling, the inverse pendulum effect is considered too, witch is one of the innovations of the research. By doing various simulations, the validity of controller is tested. Also the performance of the... 

    Cooperative Search and Localization of Aerial Targets, Using a Group of Fixed Wing UAVs

    , M.Sc. Thesis Sharif University of Technology pourhaji, Amir (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    Topic that is investigated in this article include identify and localization a number of aerial target penetrating into a protected by area by a swarm of UAVs is fixed wing. UAVs do not have any prior notice of positioning targets. In addition, it is assumed that lacks any radiation exploitable targets and thus use UAVs for Targets Detection from an active radar system. Obviously this article focus on developing a guidance algorithm UAVs to this particular issue and also as the targets participatory is localization algorithm. In addition, extraction type and performance characteristics radar system required and also performance characteristics of the class of UAVs, which is suitable to... 

    A New Method for Integrated Controller and Observer Design of a Nonlinear System Using Genetic Programming

    , M.Sc. Thesis Sharif University of Technology Khosroabadi, Saleh (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    The purpose of this paper is to design an integrated controller and observer (ICO) for a nonlinear system using genetic programming. ICO is a function that constructs control command directly from the measured state variables of the system. It means that, this function should imitate the behavior of the observer and controller and control the system with acceptable performance in different initial conditions, at the presence of disturbances and system uncertainties. The complexity of this design method, is not related to the complexity of the plant, in fact, the complexity in plant just effects at run time, but the design procedure does not change. So, if exact model of plant exist, using... 

    Development of Integrated Model of the Wastewater and Organic Solid Waste Flows to Minimize Environmental Impacts and Maximize Energy Recovery for a Residential Building

    , M.Sc. Thesis Sharif University of Technology Hadi, Hamid (Author) ; Avami, Akram (Supervisor)
    Abstract
    Nowdays much of the organic solid waste and wastewater is buried using centralized and traditional methods. This leads to many problems, including groundwater pollution, methane emissions into the atmosphere and rapid transmission of disease. In order to avoid these problems, using a decentralized approach can be a good solution. In this study, recovery of organic waste and wastewater of residential buildings using anaerobic digester as a decentralized way, have been examined. Using experiments, the optimum mass ratio of organic solid waste and wastewater is obtained as 80% and 20% respectively. Biogas production model is developed using mass balance and Balance of electrons in redox... 

    Parallel Multi-disciplinary Design Optimization of a Guided Flying Vehicle

    , M.Sc. Thesis Sharif University of Technology Darabi, Davoud (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    Multi-disciplinary design optimization (MDO) of a surface to air flying vehicle has been done in this research, on the basis of flight simulation. The MDO problem have five disciplines consists of aerodynamic, propulsion, guidance, control, and fire control. Multiple campaign scenarios are defined. The MDO problem has 31 design variables and two objective functions. The objective functions are flying vehicle weight and miss distance. A new meta-heuristic algorithm has been designed to solve multi-objective optimization problems. The new algorithm has been called Multi-objective Adaptive Real-coded Memetic Algorithm (MARCOMA). The MARCOMA can solve large-scale and multi-objective problems and... 

    Dynamic Modelling and Nonlinear Control of a Hybrid Powered Hexarotor for Precise Trajectory Tracking

    , M.Sc. Thesis Sharif University of Technology Saadat, Sepehr (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In this Thesis, an unmanned multicopter with a new structure is modeled and a nonlinear controller is designed for it to track the trajectories precisely. The multicopter in this thesis, has six propellers with a hybrid propulsion system (a combination of fuel and electric propulsion system) that has the ability to carry more payload and maintain more flight duration compared to electric multicopters. In the beginning, the performance characteristics and technical specifications of the hexacopter are presented. For modeling, first the equations of six degrees of freedom movement of the hexacopter are derived by the Newton-Euler method. In the next step, the forces and torques applied to the... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Developing a Heuristic Filter Utilizing Firefly Optimization Algorithm: A Case Study on State Estimation of a Slung Payload from a Quadrotor

    , M.Sc. Thesis Sharif University of Technology Raoufi, Mohsen (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    The aim of the present thesis is to develop a novel heuristic filter by utilizing Firefly Optimization Algorithm for state estimation of nonlinear, non-Gaussian systems. The proposed filter formulates the estimation problem as a dynamic, stochastic one. The swarm intelligence of the fireflies enables the filter to find and track the best estimation. To estimate the states of a system, the model of the system is required. Hence, an 8-DoF quadrotor with slung payload system, as a case study, is modeled by the tensor method. In this case, as a highly nonlinear system, in order not to rely on extra sensors for monitoring swing-angle, the estimation of payload states is needed. In this regard,...