Loading...
Search for:
salkhordeh--r
0.093 seconds
Total 7460 records
An operating system level data migration scheme in hybrid DRAM-NVM memory architecture
, Article Proceedings of the 2016 Design, Automation and Test in Europe Conference and Exhibition, DATE 2016, 14 March 2016 through 18 March 2016 ; 2016 , Pages 936-941 ; 9783981537062 (ISBN) ; Asadi, H ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
With the emergence of Non-Volatile Memories (NVMs) and their shortcomings such as limited endurance and high power consumption in write requests, several studies have suggested hybrid memory architecture employing both Dynamic Random Access Memory (DRAM) and NVM in a memory system. By conducting a comprehensive experiments, we have observed that such studies lack to consider very important aspects of hybrid memories including the effect of: a) data migrations on performance, b) data migrations on power, and c) the granularity of data migration. This paper presents an efficient data migration scheme at the Operating System level in a hybrid DRAM-NVM memory architecture. In the proposed...
An enterprise-grade open-source data reduction architecture for all-flash storage systems
, Article Proceedings of the ACM on Measurement and Analysis of Computing Systems ; Volume 6, Issue 2 , 2022 ; 24761249 (ISSN) ; Raaf, P ; Kishani, M ; Salkhordeh, R ; Asadi, H ; Brinkmann, A ; Sharif University of Technology
Association for Computing Machinery
2022
Abstract
All-flash storage (AFS) systems have become an essential infrastructure component to support enterprise applications, where sub-millisecond latency and very high throughput are required. Nevertheless, the price per capacity ofsolid-state drives (SSDs) is relatively high, which has encouraged system architects to adoptdata reduction techniques, mainlydeduplication andcompression, in enterprise storage solutions. To provide higher reliability and performance, SSDs are typically grouped usingredundant array of independent disk (RAID) configurations. Data reduction on top of RAID arrays, however, adds I/O overheads and also complicates the I/O patterns redirected to the underlying backend SSDs,...
Operating system level data tiering using online workload characterization
, Article Journal of Supercomputing ; Volume 71, Issue 4 , April , 2015 , Pages 1534-1562 ; 09208542 (ISSN) ; Asadi, H ; Ebrahimi, S ; Sharif University of Technology
Kluwer Academic Publishers
2015
Abstract
Over the past decade, storage has been the performance bottleneck in I/O-intensive programs such as online transaction processing applications. To alleviate this bottleneck with minimal cost penalty, cost-effective design of a high-performance disk subsystem is of decisive importance in enterprise applications. Data tiering is an efficient way to optimize cost, performance, and reliability in storage servers. With the promising advantages of solid-state drives (SSDs) over hard disk drives (HDDs) such as lower power consumption and higher performance, traditional data tiering techniques should be revisited to use SSDs in a more efficient way. Previously proposed tiering solutions have...
ReCA: An efficient reconfigurable cache architecture for storage systems with online workload characterization
, Article IEEE Transactions on Parallel and Distributed Systems ; Volume 29, Issue 7 , 2018 , Pages 1605-1620 ; 10459219 (ISSN) ; Ebrahimi, S ; Asadi, H ; Sharif University of Technology
IEEE Computer Society
2018
Abstract
In recent years, Solid-State Drives (SSDs) have gained tremendous attention in computing and storage systems due to significant performance improvement over Hard Disk Drives (HDDs). The cost per capacity of SSDs, however, prevents them from entirely replacing HDDs in such systems. One approach to effectively take advantage of SSDs is to use them as a caching layer to store performance critical data blocks in order to reduce the number of accesses to HDD-based disk subsystem. Due to characteristics of Flash-based SSDs such as limited write endurance and long latency on write operations, employing caching algorithms at the Operating System (OS) level necessitates to take such characteristics...
An analytical model for performance and lifetime estimation of hybrid DRAM-NVM main memories
, Article IEEE Transactions on Computers ; Volume 68, Issue 8 , 2019 , Pages 1114-1130 ; 00189340 (ISSN) ; Mutlu, O ; Asadi, H ; Sharif University of Technology
IEEE Computer Society
2019
Abstract
Emerging Non-Volatile Memories (NVMs) have promising advantages (e.g., lower idle power, higher density, and non-volatility) over the existing predominant main memory technology, DRAM. Yet, NVMs also have disadvantages (e.g., longer latencies, higher active power, and limited endurance). System architects are therefore examining hybrid DRAM-NVM main memories to enable the advantages of NVMs while avoiding the disadvantages as much as possible. Unfortunately, the hybrid memory design space is very large and complex due to the existence of very different types of NVMs and their rapidly-changing characteristics. Therefore, optimization of performance and lifetime of hybrid memory based...
An efficient hybrid I/O caching architecture using heterogeneous SSDs
, Article IEEE Transactions on Parallel and Distributed Systems ; Volume 30, Issue 6 , 2019 , Pages 1238-1250 ; 10459219 (ISSN) ; Hadizadeh, M ; Asadi, H ; Sharif University of Technology
IEEE Computer Society
2019
Abstract
Storage subsystem is considered as the performance bottleneck of computer systems in data-intensive applications. Solid-State Drives (SSDs) are emerging storage devices which unlike Hard Disk Drives (HDDs), do not have mechanical parts and therefore, have superior performance compared to HDDs. Due to the high cost of SSDs, entirely replacing HDDs with SSDs is not economically justified. Additionally, SSDs can endure a limited number of writes before failing. To mitigate the shortcomings of SSDs while taking advantage of their high performance, SSD caching is practiced in both academia and industry. Previously proposed caching architectures have only focused on either performance or endurance...
OS-level Data Tiering to Improve Performance of RAID Arrays
, M.Sc. Thesis Sharif University of Technology ; Asadi, Hossein (Supervisor)
Abstract
Storage is well-known as the performance bottleneck in I/O intensive programs such as online transaction processing applications; thus designing a cost-effective high performance disk subsystem is a major concern in enterprise applications. Data tiering is an efficient way to optimize cost, performance, and reliability in storage servers. With the promising advantages of Solid State Drives (SSDs) over Hard Disk Drives (HDDs) such as lower power consumption and higher performance , traditional data tiering techniques should be revisited in order to use SSDs in a more efficient way. This thesis presents a data tiering technique at the Operating System (OS) level to enhance system performance...
Optimization of Operating System to Employ Emerging Memory Technologies
, Ph.D. Dissertation Sharif University of Technology ; Asadi, Hossein (Supervisor)
Abstract
Non-Volatile Memories (NVMs) are emerging storage devices with promising characteristics such as low static power consumption, high performance, and non-volatile property to keep the stored data in the absence of power supply. Despite such interesting characteristics, NVMs suffer from high dynamic power consumption and limited lifetime. These limitations prevent NVMs from directly replacing the existing storage devices without any refinement in the architecture of computer systems. In this dissertation, we first investigate the characteristics of emerging NVMs and offer effective architectures to improve the efficiency of computer systems at the Operating System (OS) level. The main aim of...
A rapid neural network-based demand estimation for generic buildings considering the effect of soft/weak story
, Article Structure and Infrastructure Engineering ; 2022 ; 15732479 (ISSN) ; Alishahiha, F ; Mirtaheri, M ; Soroushian, S ; Sharif University of Technology
Taylor and Francis Ltd
2022
Abstract
Recent earthquakes clarified that existing a soft/weak-story in a building could completely invert the failure mechanisms of the structure. Several studies were implemented to evaluate the potential risk subjected to the buildings under the earthquake hazard. However, these researchers discarded the effect of soft/weak-story on the demand parameters of their models. This paper presents a rapid demand estimation framework for generic buildings considering the effect of soft/weak-story. In this regard, the simplified model developed according to the HAZUS approach is rectified to apply the effect of soft/weak-story on the structural behavior of the generic buildings. Artificial neural networks...
Network vulnerability analysis through vulnerability take-grant model (VTG)
, Article 7th International Conference on Information and Communications Security, ICICS 2005, Beijing, 10 December 2005 through 13 December 2005 ; Volume 3783 LNCS , 2005 , Pages 256-268 ; 03029743 (ISSN); 3540309349 (ISBN); 9783540309345 (ISBN) ; Sadoddin, R ; Jalili, R ; Zakeri, R ; Omidian, A. R ; Sharif University of Technology
2005
Abstract
Modeling and analysis of information system vulnerabilities helps us to predict possible attacks to networks using the network configuration and vulnerabilities information. As a fact, exploiting most of vulnerabilities result in access rights alteration. In this paper, we propose a new vulnerability analysis method based on the Take-Grant protection model. We extend the initial Take-Grant model to address the notion of vulnerabilities and introduce the vulnerabilities rewriting rules to specify how the protection state of the system can be changed by exploiting vulnerabilities. Our analysis is based on a bounded polynomial algorithm, which generates the closure of the Take-Grant graph...
Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
2011
Abstract
We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We...
First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases
, Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
2011
Abstract
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on...
Reply: Abedpour, asgari, and tabar
, Article Physical Review Letters ; Volume 106, Issue 20 , 2011 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2011
Irreversibility in response to forces acting on graphene sheets
, Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
2010
Abstract
The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T
Analysis of design goals of cryptography algorithms based on different components
, Article Indonesian Journal of Electrical Engineering and Computer Science ; Volume 23, Issue 1 , 2021 , Pages 540-548 ; 25024752 (ISSN) ; Aref, M. R ; Khorshiddoust, R. R ; Sharif University of Technology
Institute of Advanced Engineering and Science
2021
Abstract
Cryptography algorithms are a fundamental part of a cryptographic system that is designed and implemented to increase information security. They are the center of attention of experts in the information technology domains. Although the cryptography algorithms are implemented to attain the goals such as confidentially, integrity, and authenticity of designing, but other matters that must be noticed by designers include speed, resource consumption, reliability, flexibility, usage type, and so on. For the useful allocation of hardware, software, and human resources, it is important to identify the role of each of the factors influencing the design of cryptographic algorithms to invest in the...
Conservation of statistical results under the reduction of pair-contact interactions to solvation interactions
, Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 72, Issue 6 , 2005 ; 15393755 (ISSN) ; Farzami, R. R ; Ejtehadi, M. R ; Sharif University of Technology
2005
Abstract
We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being the source of additive (solvation) terms in pair-contact interactions, they were used to reduce the energy parameters while resulting in a clear vector manipulation of energy. The reduced (additive) potential performs considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabilities of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors (structures) as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a crossing point in the log-linear diagram of...
Multifunctional hyperelastic structured surface for tunable and switchable transparency
, Article Applied Sciences (Switzerland) ; Volume 11, Issue 5 , 2021 , Pages 1-11 ; 20763417 (ISSN) ; Goudarzi, T ; Fleury, R ; Naghdabadi, R ; Sharif University of Technology
MDPI AG
2021
Abstract
We leverage the crucial hyperelastic properties of a multifunctional structured surface to optimize the reconfigurability of the electromagnetic transmission under large nonlinear mechanical deformations. This multiphysics, multifunctional, hyperelastic structured surface (HSS) offers two simultaneous intriguing functionalities; tunability and switchability. It is made of copper reso-nators and a Polydimethylsiloxane (PDMS) substrate, which is one of the most favorable deformable substrates due to its hyperelastic behavior. The proposed HSS is fabricated via an original cost-effective technique and the multiphysics functionalities are captured in both experimental tests and numerical...
MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments
, Article PLoS Computational Biology ; Volume 18, Issue 6 , 2022 ; 1553734X (ISSN) ; Modegh, R. G ; Rabiee, H. R ; Sarbandi, E. R ; Rezaie, N ; Tam, K. T ; Forrest, A. R. R ; Sharif University of Technology
Public Library of Science
2022
Abstract
Hi-C is a genome-wide chromosome conformation capture technology that detects interactions between pairs of genomic regions and exploits higher order chromatin structures. Conceptually Hi-C data counts interaction frequencies between every position in the genome and every other position. Biologically functional interactions are expected to occur more frequently than transient background and artefactual interactions. To identify biologically relevant interactions, several background models that take biases such as distance, GC content and mappability into account have been proposed. Here we introduce MaxHiC, a background correction tool that deals with these complex biases and robustly...