Loading...
Search for:
samadi-vaghefi--navid
0.104 seconds
Total 149 records
Optimum Design of Aerodynamic Ducts with Inverse Design
, M.Sc. Thesis Sharif University of Technology ; Farhanieh, Bijan (Supervisor)
Abstract
In optimum design, the goal is to optimize the flow and heat transfer, considering the system limitations. In this research, inverse design is used as a new approach for optimization of aerodynamic ducts and shows that optimization of duct geometry is equivalent to the optimization of the pressure acting on the wall. In order to calculate the optimum pressure distribution, boundary layer equations were solved taking into account the pressure gradient. Moreover, with the help of genetic algorithm a pressure distribution can be obtained that offers the maximum pressure, avoiding fluid separation. It is obvious that this condition is equivalent to maximum pressure recovery in the aerodynamic...
A Novel Stability-based EMG-assisted Model of the Lumbar Spine to Estimate Trunk Muscle Forces and Spinal Loads in Various Static Activities
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
The spine like every other mechanical pillar, is exposed to buckling and loss of stability. While existing biomechanical models emphasize the pressure force on the disk as the main cause of injury, there is also a possibility of local buckling phenomenon in vertebral discs. Because of the prevalence and high cost of lower back pain, it is essential to evaluate the forces carried by disks and lumbar muscles during occupational activities more accurately. In this regard, hybrid EMG-assisted optimization (EMGAO) approaches are most common methods for estimation of spinal loads. These models, not only use EMG data to be physiologically creditable, but also satisfy equilibrium requirements at all...
Deformation behavior and cavitation of AA2017 at elevated temperatures
, Article Metals and Materials International ; 2020 ; Serajzadeh, S ; Sharif University of Technology
Korean Institute of Metals and Materials
2020
Abstract
In this work, deformation behavior of AA2017-T4 at elevated temperatures was studied employing uni-axial tensile and creep experiments. Tensile tests were carried out at temperatures varying 150–500 °C under different strain rates then, a combination of neural network and dynamic material modeling was utilized to construct the processing maps. Furthermore, creep experiments were conducted to assess inelastic deformation behavior of the alloy at temperatures between 150 and 225 °C and stresses in the range of 150 to 230 MPa. Microstructural evaluations were carried out for determination of microstructural changes and formation of voids and cavities within the samples. The results showed that...
Video images and undulatory movement equation of pangasius sanitwongsei's caudal fin of steady swimming fish
, Article International Journal of Design and Nature and Ecodynamics ; Vol. 9, issue. 2 , 2014 , pp. 95-108 ; ISSN: 1755-7445 ; Abbaspour, M ; Sharif University of Technology
2014
Abstract
Experimental hydrodynamics imaging of four Pangasius sanitwongsei were considered. A quantitative characterization of caudal fin is presented in this article. Steady swimming of four P. sanitwongsei with different total length was studied experimentally and taped by high-speed digital video, and undulatory movement of each fish at different velocity was revealed. The pattern of body undulatory movement of the fish was drawn from the video images. Three main factors that determine the fish swimming behavior are Reynolds number, Strouhal number and shape. In this study, Lf/L was chosen as a characteristic of shape, where Lf was the distance from the start of the head to the end of the head....
A Study of Creep and Hot Deformation Behavior of an Aluminum Alloy
, M.Sc. Thesis Sharif University of Technology ; Serajzadeh, Siamak (Supervisor)
Abstract
In this study, the high temperature deformation behavior of Al-Cu aluminum alloy and the results of single-stage and multi-stage creep tests have been investigated. To investigate the behavior of alloy fluidity in temperature range 150 ° C to 500 ° C and strain rate 0.0005 s-1 – 0.05 s-1 were subjected to tensile test. The results show that in the temperature range of 200 ° C to 225 ° C, the sensitivity coefficient to the strain rate is negative, which indicates the occurrence of dynamic precipitation during deformation. In the meantime, the reverse processes in the mentioned temperature range were investigated and it was found that 250 ° C was the starting temperature of the dynamic...
The Effect of Vertical Excitation on the Response of Soil-Structure Systems Allowed to Uplift
, M.Sc. Thesis Sharif University of Technology ; Ghannad, Mohammad Ali (Supervisor)
Abstract
The simultaneous effect of uplift phenomenon and vertical vibration of soil-structure system is investigated in this study. The super-structure is modeled as an equivalent single-degree of freedom with bilinear behavior mounted on a rigid foundation resting on distributed tensionless Winkler springs and dampers. The effect of vertical excitation on the response of soil-structure systems allowed to uplift is investigated parametrically through time history analysis for a wide range of systems subjected to sine pulse and a group of ground motions recorded on the soil type of C. The results consist of maximum displacement of the uplifting system and ductility demand of the super-structure as a...
Effect of stone-wales defects on electronic properties of armchair graphene nanoribbons
, Article 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) ; Faez, R ; Sharif University of Technology
2013
Abstract
In this paper, the effects of Stone-Wales (SW) defect on transport properties of armchair graphene nanoribbons (AGNRs) are studied using tight binding calculations combined with nonequilibrium Green's function (NEGF). We evaluate transmission and density of states (DOS) in two cases, pristine and defective AGNR, and we compare the results. Our results indicate that in the latter case, a larger bandgap is made due to symmetry breaking in GNR layer
A novel stability-based EMG-assisted optimization method for the spine
, Article Medical Engineering and Physics ; Volume 58 , 2018 , Pages 13-22 ; 13504533 (ISSN) ; Arjmand, N ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Traditional electromyography-assisted optimization (TEMG) models are commonly employed to compute trunk muscle forces and spinal loads for the design of clinical/treatment and ergonomics/prevention programs. These models calculate muscle forces solely based on moment equilibrium requirements at spinal joints. Due to simplifications/assumptions in the measurement/processing of surface EMG activities and in the presumed muscle EMG-force relationship, these models fail to satisfy stability requirements. Hence, the present study aimed to develop a novel stability-based EMG-assisted optimization (SEMG) method applied to a musculoskeletal spine model in which trunk muscle forces were estimated by...
A Simulation Study of Graphene Nanoribbon Field Effect Transistor
, M.Sc. Thesis Sharif University of Technology ; Faez, Rahim (Supervisor)
Abstract
In this thesis, a field effect transistor (FET) using armchair graphene nanoribbon as the channel is simulated, and the effects of changing nanoribbon width and length, as well as adding defects, are also studied. To obtain the Hamiltonian matrix and the energy band structure of graphene nanoribbon, tight binding method is used in which the first and third neighbor approximation is considered. Also, to maximize accuracy, we also considered the edge bond reconstruction. To obtain the transport characteristics of the transistor, such as the transmission coefficient and the density of states (DOS), Poisson and Schrodinger equations are solved self-consistently. We used the nonequilibrium...
An Adaptive Multipath Ant Routing Algorithm for Mobile Ad HoC Networks
, M.Sc. Thesis Sharif University of Technology ; Beigy, Hamid (Supervisor)
Abstract
Mobile ad hoc networks (MANETs) are networks which consist entirely of mobile nodes, placed together in ad hoc manner, i.e. with minimal prior planning. In these networks, all nodes have routing capabilities and forward data packets for other nodes. Nodes can enter or leave the network at any time and may also be mobile. Hence, the network topology changes frequently. There are lots of challenges in these networks, which make routing to be a hard task. These challenges arise from the dynamic and unplanned nature of these networks such as unreliability of wireless communication, limited resources available in terms of bandwidth, processing capacity, network size, and etc. Due to these...
Improving Security of Flash-Based Solid State Disks
, M.Sc. Thesis Sharif University of Technology ; Asadi, Hossein (Supervisor)
Abstract
One of the most intrinsic challenges of flash-based Solid State Drives (SSDs) is erasebefore-write limitation and the limited endurance of flash chips. Wear leveling and garbage collection are two mechanisms implemented in SSD’s controller to enhance endurance and performance. While wear leveling attempts to distribute erasures across all blocks in an even manner, it imposes a new security challenge on SSD,which leads to the presence of invalid data blocks in flash chips. Therefore, some data blocks that are logically deleted by the user are still available in flash chips and can be recovered by software or hardware recovery tools.
In this paper, a new criteria named vulnerability time...
In this paper, a new criteria named vulnerability time...
Seismic Retrofit of Reinforced Concrete Columns With Post-Tensioned Metal Strips
, Ph.D. Dissertation Sharif University of Technology ; Moghaddam, Hassan (Supervisor)
Abstract
This thesis presents the results of an experimental and analytical study on the application of the strapping technique for seismic retrofit of reinforced concrete columns. In this technique, the columns are externally confined by post-tensioned metal strips. In the first phase of the experiments, the compressive stress-strain behavior of strapped cylindrical and prismatic specimens was studied. Effects of several parameters were studied including shape and size of specimens, strength of plain concrete, mechanical characteristics of confining strips and the level of pre-tensioning of the strips. The second phase of the tests included studying the lateral performance of strapped RC columns....
Elimination of Environmental Problems Caused by Leakage of Electrical Transformers Fluid (Askarel) by Biological Methods
, M.Sc. Thesis Sharif University of Technology ; Yaghmaei, Soheila (Supervisor)
Abstract
Polychlorinated biphenyls are a group of hydrocarbons that are composed of two benzene rings and chlorine admixture on it. Due to their special properties, these materials were added to oils for years to improve their properties. These compounds have many industrial applications in various industries, such as the production of fluorescent lamps, adhesives, dyes, and especially as a cooling and insulating liquid as the Askarel oil in power transformers. Due to the properties of these compounds, which include stability and bioaccumulation in fatty tissues, the wide use of these substances causes environmental contamination and leads to a variety of cancerous diseases. Among the cleaning...
Lumbopelvic Rhythm during Forward and Backward Sagittal Trunk Rotations; in vivo Measurements Using Inertial Sensors
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Direct in vivo measurements of spinal loads and muscle forces are invasive. Investigators have thus used musculoskeletal biomechanical models that require kinematic data including trunk and pelvis angular movements as their inputs. . Novel devices measure anglular movements using both inertial sensors (such as gyroscopes and accelerometers) and miniature magnetometers. Relative low cost, portability, and accuracy are among specific characteristics of inertial tracking devices. The main objective of the present study was set to measure spinal kinematics including the lumbopelvic rhythm as the ratio of total lumbar rotation over pelvic rotation during trunk sagittal movement which is essential...
Evaluation of 1991 NIOSH Lifting Equation in Controlling the Biomechanical Loads of the Human Spine
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
The 1991 NIOSH Lifting Equation (NLE) is widely used to assess risk of injury to the spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses two biomechanical models of the spine to verify whether the RWL generates L5-S1 loads within the limits (e.g., 3400 N for compression recommended by NIOSH and 1000 N for shear recommended in some studies).Severallifting activities are simulated here to evaluate the RWL by the NLE and the L5-S1 loads by the models. In lifting activities involving moderate to large forward trunk flexion, the estimated RWL generates L5-S1 spine loads exceeding the recommended limits. The NIOSH vertical multiplier is the likely...
Sagittal Range of Motion of the Thoracic Spine Using Inertial Tracking Device and Effect of Measurement Errors on Model Predictions
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. Effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total...
A Detailed Finite Element Model of the Lumbar Spine under Muscle Forces
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Etiological studies proves the fact that Low Back Pain (LBP) is one of the most expensive and prevalent desease all over the world. This fact illustrates the reqiurment of the special effort in ordet to reducing the pain due to this problem. Finite element modeling of human spine is one the suitable methods to simulate the behavior of human spine in different loading conditions. These conditions could be different daily occupational tasks. There is two general viewpoint toward finite element modeling of human spine. The fisrt method focuses on the detailed geometry and mechanical properties of spine, while the other complexities such as detailed muscle forces are overlooked. The latter...
A Hyrid EMG-optimization Based Model of the Lumbar Spine to Estimate Muscle Forces in Different Tasks
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Low back pains (LBP) are prevalent and costly. One of the important factors causing LBP is excessive axial compression and shear forces that are applied on the intervertebral discs during different activities. Due to lack of direct in vivo measurement methods for estimating these loads, musculoskeletal biomechanical models have been emerged as indispensable tools under various activities. Different biomechanical models have been suggested to estimate muscle forces and spinal loads base on optimization, EMG and hybrid (EMG assisted optimization, EMGAO) methods. Although there have been a number of studies on the differences between various optimization and EMG-based methods, there has been no...
Effect of Iatrogenic Muscle Injuries on Spine Biomechanics During Posterior Lumbar Surgeries Using a Biomechanical Model for Design of Rehabilitation Exercises
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Posterior lumbar surgery is often associated with extensive injuries to back muscles. In this thesis, the effect of such iatrogenic injuries in some patients was examined. For this purpose, the CSA of back muscles in 6 patients were measured using MR scan. To examine any natural change in CSAs of healthy people or instrument errors, same measurement were carried out on 10 healthy volunteers. In addition, a detailed anatomical model of an intact human spine was developed. With the aim of experimental studies and intact model, the post-operative model of patients was also developed. These two models were used to quantizing the change in activity of back muscles during some symmetric, normal...
3D Measurements of the Thoracic and Lumbar Spine Range of Motions Using Inertial Sensors
, M.Sc. Thesis Sharif University of Technology ; Arjmand, Navid (Supervisor)
Abstract
Musculoskeletal abnormalities affect joints and change their range of motion (RoM). Correcting these abnormalities thoroughly depends on the information related to the normal spine movement. Therefore, spine motion analysis can be used as an important tool to distinguish between healthy and patient individuals as well as to determine the intensity of such diseases. Additionally, existing biomechanical models need kinematics data in order to analyze spinal forces. The present study hence aims to measure 3D range of motion of thoracic and lumbar spine using inertial sensors. Their small size, portability, low weight, and relatively low cost make inertial sensors as indispensable tools in...