Loading...
Search for: schneider--g--e
0.173 seconds

    Application of an optimized SLW model to calculation of non-gray radiation heat transfer in a furnace

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 13 November 2015 through 19 November 2015 ; Volume 8B-2015 , 2015 ; 9780791857502 (ISBN) Darbandi, M ; Abrar, B ; Schneider, G. E
    2015
    Abstract
    The spectral line based weighted sum of gray gases (SLW) model is considered as an advanced model, which can solve the radiative transfer equation (RTE) in non-gray participating media by dividing the absorption cross section spectrum into a limited number of intervals. Each interval is then treated as a gray gas medium, in which the attributed RTE should be solved separately. Therefore, the SLW model would be computationally more efficient than the other non-gray participating media solvers because it is faced with a small number of RTE solutions. In this work, we present a novel optimized SLW model and applied it to radiation heat transfer calculation in a model furnace. The current... 

    The effect of soot nano-particles injection on two-phase smoke aerosol formation in a kerosene-fired burner

    , Article 54th AIAA Aerospace Sciences Meeting, 2016, 4 January 2016 through 8 January 2016 ; 2016 ; 9781624103933 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    Feeding a laboratory furnace with the gaseous kerosene, the resulting two-phase turbulent flame is simulated to study the effects of injecting soot nano-particles into the inflow air on the emissions of smoke aerosol, CO, and CO2species pollutants, and the resulting radiation heat transfer. We use our past experiences in aerosol modeling of soot nano/micro particles in turbulent nonpremixed flames burning simple hydrocarbon fuels and extend them to study the effects of injecting gaseous kerosene on the aforementioned parameters. To model the evolutionary process of soot nanoparticle formation, i.e., the nucleation, coagulation, surface growth, and oxidation, we employ a two-equation soot... 

    CFD-aided simulation of frost growth inside a narrow duct with uniform wall temperature variation

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Darbandi, M ; Asgari, E ; Hajikaram, M ; Schneider, G. E ; Sharif University of Technology
    2014
    Abstract
    In this paper, we study the frost formation and growth at the walls of a duct with uniform wall temperature variation. The simulation is performed for laminar flow regime considering suitable semi-empirical models incorporated with computational fluid dynamics (CFD) method. The frost growth is considered to be normal to the duct surface. Since the duct aspect ratio is high, we perform our simulations in two-dimensional zones. To simulate the frost layer properly, we solve both the energy and mass balance equations implementing some semi-empirical correlations on the frost side. At this stage, we suitably predict the required heat flux value at the solid boundary and the heat transfer... 

    Using the direct simulation Monte Carlo method to study the effect of wall temperature variation on gas mixing evolution through micro T-mixers

    , Article 11th International Energy Conversion Engineering Conference ; 2013 Darbandi, M ; Sabouri, M ; Lekzian, E ; Schneider, G. E ; Sharif University of Technology
    2013
    Abstract
    In this work, we study the gas mixing behavior in a micro T-mixer using the direct simulation Monte Carlo (DSMC) method. The gas mixing process is monitored through a T-mixer, which is fed by two different CO and N2 gases; flowing into the T-mixer through the upper and lower inlets. We investigate the effects of axial and lateral wall temperature gradients on the mixing evolution at different rarefaction levels. The achieved results show that any temperature difference between the channel walls would result in an increase in mixing length for the chosen wall temperature gradient ranges and the studies pressure cases. Our observations show that a positive temperature gradient toward the... 

    Solving combined natural convection-radiation in participating media considering the compressibility effects

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 13- 17 January , 2014 ; ISBN: 9781624102561 Darbandi, M ; Abrar, B ; Schneider, G. E ; Sharif University of Technology
    2014
    Abstract
    In this work, we aim to study the effect of temperature gradients on the combined natural convection-radiation heat transfer problem in participating media. To impose this combined effect, we first solve the radiative transfer equation in an absorbing and emitting media. Then, we suitably add the radiation source terms to the energy equation and solve the fluid flow equations. Literature shows that many incompressible algorithms use the Boussinesq assumption to model the thermobuoyant force; however, the validity of this assumption is limited to cases with low temperature gradient distributions. Evidently, Boussinesq assumption would result in considerable errors in high temperature gradient... 

    Aerosol modeling of soot nanoparticles in a turbulent diffusion flame using an extended detailed kinetic scheme

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 2014 Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2014
    Abstract
    In this work, a hybrid finite volume element FVE method is extended to simulate the evolution of soot nanoparticles in a turbulent axisymmetric confined diffusion flame. The FVE method can handle irregular-shaped solution domains and maintain the underlying physical conservation principles. To consider the evolutionary process of soot nanoparticles including nucleation, coagulation, surface growth, and oxidation, a two-variable approach is employed. In this approach, the soot mass fraction and soot number density transport equations are solved using an extended detailed chemical kinetics. Considering the phenyl route to describe the nucleation process, soot inception is based on the... 

    Finite element volume analysis of propane preheated air flame passing through a minichannel

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2014
    Abstract
    A hybrid finite-element-volume FEV method is extended to simulate turbulent non-premixed propane air preheated flame in a minichannel. We use a detailed kinetics scheme, i.e. GRI mechanism 3.0, and the flamelet model to perform the combustion modeling. The turbulence-chemistry interaction is taken into account in this flamelet modeling using presumed shape probability density functions PDFs. Considering an upwind-biased physics for the current reacting flow, we implement the physical influence upwinding scheme PIS to estimate the cell-face mixture fraction variance in this study. To close the turbulence closure, we employ the two-equation standard κ-ε turbulence model incorporated with... 

    Numerical simulation of turbulent reacting flow in a combustion chamber using detailed chemical kinetics

    , Article 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 ; 2013 ; 9781624101816 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2013
    Abstract
    In this work, a hybrid finite-volume-element method is used to solve turbulent reacting flow in a combustion chamber considering detailed chemical kinetics. The hybrid unification enables the solver to treat the reacting flow in very complex geometries and to respect the required physical considerations fully. We employ two-equations standard κ-ω turbulence model incorporated with suitable wall functions to model the turbulence behavior. Assuming optically-thin gases, radiation effects are taken into account in our simulations. A flamelet combustion model is applied to consider the large detailed chemical kinetics, which can normally occur within combustion processes. Turbulence-chemistry... 

    Dissipative particle dynamics simulation of electroosmotic flow in nanoscale channels

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4 January 2010 through 7 January 2010 ; 2010 ; 9781600867392 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This Paper presents the simulation of electroosmotic flow in nanochannels using the dissipative particle dynamics (DPD) method. Most of the past electroosmotic phenomenon studies have been carried out using the continuum flow assumptions. However, there are many electroosmotic applications in nanoscales NEMS and microscales MEMS, which need to be treated using non-continuum flow assumptions. We simulate the electroosmotic flow within the mesoscopic scale using the DPD method. Contrary to the ordinary molecular dynamics method, the DPD method provides less computational costs. We will show that the current DPD results are in very good agreement with other available non-DPD results. To expand... 

    DPD simulation of electroosmotic flow in nanochannels and the evaluation of effective parameters

    , Article 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 28 June 2010 through 1 July 2010, Chicago, IL ; 2010 ; 9781600867453 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    We provide the simulation of electroosmotic phenomenon in nanochannels using the Dissipative Particle Dynamics (DPD) method. We study the electroosmotic phenomenon for both newtonian and non-newtonian fluids. Literature shows that most of past electroosmotic studies have been concentrated on continuum newtonian fluids. However, there are many nano/microfluidic applications, which need to be treated as either non-newtonian fluids or non-continuum fluids. In this paper, we simulate the electroosmotic flow in nanochannel considering no limit if it is neither continuum nor non-nonewtonian. As is known, the DPD method has several important advantages compared with the classical molecular dynamics... 

    Computational zone adaptation strategy for unstructured grid users

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4 January 2010 through 7 January 2010, Orlando, FL ; 2010 ; 9781600867392 (ISBN) Fouladi, N ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This paper presents an advanced grid adaptation strategy to be used by unstructured grid users. The idea behind this strategy originates from the need for automatic control of computational grids during iterative procedures utilized by fluid flow solvers. This strategy eliminates unnecessary grid computations by dividing the unstructured grid into active and inactive zones automatically. The active zones are extended automatically in order to capture the propagation of disturbances in solution domain. In this work, we focus to solve the grid deformations which are imposed in some portions of the main body and are propagated into computational domain during the iterative solutions. To achieve... 

    A directional renumbering strategy for improving unstructured grid data structure

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4 January 2010 through 7 January 2010 ; 2010 ; 9781600867392 (ISBN) Fouladi, N ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    A very simple and computationally low cost numerical algorithm is developed to generate a quasi-structured data structure for an unstructured grid. To achieve this purpose, the data structure in the matrices of an unstructured grid is classified to address the element layers and node lines in the computational domain. In this regard, elements and nodes of the unstructured grid are renumbered in a directional ordering-based strategy. The elements and nodes arrangement in each layer and line is accomplished in a unique direction around an interior object of the grid either clockwise or counterclockwise. Furthermore, a new searching scheme is introduced which guarantees a quick search inside... 

    Numerical study on the effects of fuel injector on carbonaceous pollutants in a kerosene combustor

    , Article 13th International Energy Conversion Engineering Conference, 27 July 2015 through 29 July 2015 ; July , 2015 ; 9781624103766 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2015
    Abstract
    A gaseous-kerosene/air turbulent nonpremixed flame in a combustion chamber is simulated to investigate the effects of fuel-injector cone-angle on the pollutions of soot nano-particles, carbon monoxide, and carbon dioxide. We use a two-equation soot model in our studying, consider a detailed chemical scheme consisting of 121 species and 2613 elementary reactions, use the flamelet model, employ the presumed-shape probability density functions PDFs, apply the two-equation κ-ε turbulence model with round-jet corrections, and take into account the radiation effects assuming optically-thin flame in our numerical modeling. This research concentrates on investigating the impacts of kerosene injector... 

    Simulation of polymer chain driven by DPD solvent particles in nanoscale flows

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1035-1040 ; 9780791854501 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    In this study, we simulate the motion and reformation of polymer chain in the nanoscale fluid flow motion of the DPD (Dissipative Particle Dynamics) solvent. The behavior of polymer chain through DPD solvent is studied for 2D and 3D considerations. We implement two body forces of Poiseuille flow and electroosmotic flow to the DPD fluid particles. In case of the electroosmotic flow force, we show that the movement of polymer chain via the electroosmotic phenomenon provides less dispersion than that of the Poiseuille flow for the same polymer chain movement  

    Numerical calculation of turbulent reacting flow in a model gas-turbine combustor

    , Article 41st AIAA Thermophysics Conference, 22 June 2009 through 25 June 2009 ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2009
    Abstract
    In this work, an efficient bi-implicit strategy is suitably developed within the context of a hybrid finite volume element method to solve axisymmetric turbulent reactive flow in a model gas turbine combustor. Based on the essence of a control-volume-based finite-element method, the formulation benefits from the geometrical flexibility of the finite element methods while the discrete algebraic governing equations are derived through applying the conservation laws to discrete cells distributed in the solution domain. To enhance the efficiency of method, we extend the physical influence upwinding scheme to cylindrical coordinates. This extension helps to improve the advection flux... 

    The effects of baffle plate on soot nano-aerosol and pollutant productions in a JP-fueled combustor

    , Article 54th AIAA Aerospace Sciences Meeting, 2016, 4 January 2016 through 8 January 2016 ; 2016 ; 9781624103933 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    In this paper, the effects of a baffle plate on flame deflection and its throttling are investigated numerically in a combustor consuming jet propellant JP. We study the plate effects on the resulting soot volume fraction, soot particles diameter, mass fractions of carbon monoxide (CO), carbon dioxide (CO2), and benzene (C6H6). We use a two-equation turbulence model, a PAH-inception two-equation soot model imposing oxidation due to OH agents, a detailed chemical kinetic consisting of 121 species and 2613 elementary reactions, and the flamelet combustion model to perform the current study. We also take into account the turbulence-chemistry interaction using the presumed-shape probability... 

    Blockage-ratio effect on aerosol behavior of soot nano-pm in a combustor burning jet propulsion fuel

    , Article 46th AIAA Thermophysics Conference, 2016, 13 June 2016 through 17 June 2016 ; 2016 ; 9781624104350 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    In this study, we numerically investigate the size effect of a bluff body, embedded inside a combustor, on the formation of carbonaceous nano-particulate matter (PM). The combustor is fed with a jet propulsion fuel. We first evaluate our extended numerical tool by simulating a turbulent kerosene/air nonpremixed flame in a combustor. The achieved results are then compared with those of experiment. The comparisons show that there are good agreements between them. Next, we embed an O-ring type flame holder inside the combustor to change its configuration, i.e., to extend it to a bluff-body burner. Assuming a constant air mass flow rate, we investigate the blockage ratio effects of the burner... 

    The effect of a mini-scale primary-air injector on soot nano-aerosol formation in a jp-fueled gas-turbine combustor

    , Article 46th AIAA Thermophysics Conference, 2016, 13 June 2016 through 17 June 2016 ; 2016 ; 9781624104350 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    In this work, we numerically study the effect of a mini-scale primary-air injector on the formation of soot nano-particles in a model tubular-type gas-turbine combustor fed with JP, i.e. gaseous JP-1. We solve a documented experimental (benchmark) test case to evaluate our numerical solution and compare the achieved flame structure with that of the measured and reported data. The obtained numerical results show good agreements with the experimental data. After ensuring the validity of numerical tool, we install a mini-scale injector, split the incoming air-flow between the primary and secondary streams, inject the primary air into the combustor via the mini-scale injector, and compare the... 

    Rarefaction effects on species diffusion through nanoscales

    , Article 55th AIAA Aerospace Sciences Meeting, 9 January 2017 through 13 January 2017 ; 2017 ; 9781624104473 (ISBN) Darbandi, M ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    We use the results of direct simulation Monte Carlo (DSMC) method to evaluate the effects of rarefaction on the species diffusion through nanochannels. In this regard, we calculate the distribution of mass fraction and the diffusion velocity for the constituents of a stagnant binary gas mixture in some nanochannels, which have different sizes. We evaluate the distribution of effective diffusion coefficient throughout these nanochannels using the Fick’s law. Then, we present the rarefaction effects on the species diffusion by comparing these values with the binary diffusion coefficient, Dij, derived from the kinetic theory for near-equilibrium conditions. It is observed that the diffusion... 

    Molecular and continuum simulation of binary gas mixture flow through curved miconozzles

    , Article 12th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2018, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    In this study, multi-component CFD and DSMC solvers are used to study the gas mixture flow through a separation micronozzle at different pressure ratios. The resulting velocity and mole fraction fields, which are predicted by these solvers, are compared with each other to examine the effects of flow rarefaction on the mixture flow and the species separation and to evaluate the validity of continuum flow theory provided by the CFD solver. The results indicate good agreement of the velocity and mole fraction fields in the regions in which the pressure is sufficiently high. A decrease in pressure value, which is the result of increasing the pressure ratio at a constant inlet pressure, and a...