Loading...
Search for: selk-ghafari--a--شناسه-افزوده-نامناسب-حذف-شود
0.287 seconds

    Design and real-time experimental implementation of gain scheduling PID fuzzy controller for hybrid stepper motor in micro-step operation

    , Article Proceedings of the IEEE International Conference on Mechatronics 2004, ICM'04, Istanbul, 3 June 2004 through 5 June 2004 ; 2004 , Pages 421-426 ; 0780385993 (ISBN) Selk Ghafari, A ; Alasty, A ; Sharif University of Technology
    2004
    Abstract
    In this paper, design and real time experimental implementation of Fuzzy Gain Scheduling of PID controller for Hybrid Stepper Motor in Micro-stepping operation is described that was developed to track the desired positioning problem. The control problems characterized by mathematical models exhibit significant nonlinearity and uncertainty. Good performance of proposed Fuzzy PID controller are shown  

    Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; October 1, 2009 Vol.223: 863-874 Selk Ghafari, A. (Ali) ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    The main scope of this study is to analyse muscle-driven forward dynamics simulation of stair locomotion to understand the functional differences of individual muscles during the movement. A static optimization was employed to minimize a performance criterion based on the muscle energy consumption to resolve muscle redundancy during forward dynamics simulation. The proposed method was employed to simulate a musculoskeletal system with ten degrees of freedom in the sagittal plane and containing 18 Hill-type musculotendon actuators per leg. Simulation results illustrated that simulated joint kinematics closely tracked experimental quantities with root-mean-squared errors less than 1 degree. In... 

    Feedback control of the neuro-musculoskeletal system in a forward dynamics simulation of stair locomotion [electronic resource]

    , Article Proc. of IMechE Part H: Journal of Engineering in Medicine ; 2009, Vol. 223, No. 6, pp. 663-675 Journal of NeuroEngineering and Rehabilitation ; Volume 11, Issue 1, 30 April 2014, Article number 78 Selk Ghafari, A. (Ali) ; Meghdari, Ali ; Vossough, Gholam Reza ; Sharif University of Technology
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional—integral—derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of... 

    Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , August , 2015 , Pages 663-675 ; 09544119 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G ; Sharif University of Technology
    2015
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional - integral - derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired... 

    Effects of nanoparticles on the improvement of the dynamic response of nonuniform-thickness laminated composite beams

    , Article Journal of Mechanical Science and Technology ; Volume 30, Issue 1 , 2016 , Pages 121-125 ; 1738494X (ISSN) Zabihollah, A ; Momeni, S ; Selk Ghafari, A ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2016
    Abstract
    The dynamic behavior of nonuniform-thickness laminated composite beams, such as helicopter blades, wind turbine blades, and robot arms, is of high importance in the design and fabrication of such elements. Changing the thickness of laminated structures is a significant challenge during fabrication because different tapering configurations may significantly alter the stiffness of the structures and thus the dynamic response of the structures. In this study, the effect of adding nanoparticles to resin on the stiffness and dynamic behavior of nonuniform-thickness laminated composite beam elements was investigated. A set of experiments were conducted to examine the natural frequencies and... 

    Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , 2009 , Pages 663-675 ; 09544119 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics. The stability of the model was maintained by controlling the velocity of the body's centre of mass according to the desired centre of... 

    Variable admittance control of the exoskeleton for gait rehabilitation based on a novel strength metric

    , Article Robotica ; Volume 36, Issue 3 , March , 2018 , Pages 427-447 ; 02635747 (ISSN) Taherifar, A ; Vossoughi, G ; Selk Ghafari, A ; Sharif University of Technology
    Cambridge University Press  2018
    Abstract
    Assist-as-needed control is underlain by the aim of replacing skillful therapists with rehabilitation robots. The objective of this research was to introduce a smart assist-as-needed control system for the elderly or partially paralyzed individuals. The main function of the proposed system is to assist the patients just in the required sub phases of the motion. To ensure that a smart and compliant system is developed, the target admittance gains of the controller was adapted according to the concept of energy The admittance gains were modified so that an exoskeleton reduces interaction energy in cases wherein users have sufficient strength for task execution and maximizes the interaction... 

    Assistive-compliant control of wearable robots for partially disabled individuals

    , Article Control Engineering Practice ; Volume 74 , 2018 , Pages 177-190 ; 09670661 (ISSN) Taherifar, A ; Vossoughi, G ; Selk Ghafari, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The main objective of this research was to introduce a smart assist-as-needed control system that helps elderly or partially paralyzed individuals. To ensure that a smart and compliant controller, in each cycle of the gait is developed, we adapted the target impedance gains and feed-forward force of the assistive mechanism according to a learning law. A strength metric was defined to determine when the human needs assistance. Then, a cost function was introduced and the gains are modified to reduce the cost function. Applying the proposed controller, the interaction force between patient's limb and robot was reduced in cases wherein user has sufficient strength for task execution and... 

    Optimal target impedance selection of the robot interacting with human

    , Article Advanced Robotics ; Volume 31, Issue 8 , 2017 , Pages 428-440 ; 01691864 (ISSN) Taherifar, A ; Vossoughi, G ; Selk Ghafari, A ; Sharif University of Technology
    Robotics Society of Japan  2017
    Abstract
    Human–robot interaction is an important issue in robotic researches which is the key in many rehabilitation and robot-assisted therapy applications. Impedance control can properly handle soft interaction of robots with the environment. Optimal target impedance selection can increase the performance of the overall system and guarantee the stability. The target impedance cannot be selected without proper knowledge about the stiffness and inertia parameters of the human. In this paper, a systematic analysis is done to introduce a method to estimate the human stiffness and consequently adjust the robot target stiffness. Then, particle swarm optimization is used to find the damping and inertia... 

    Prediction of the lower extremity muscle forces during stair ascent and descent

    , Article ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2008, Brooklyn, NY, 3 August 2008 through 6 August 2008 ; Volume 3, Issue PARTS A AND B , July , 2008 , Pages 1589-1593 ; 9780791843277 (ISBN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2008
    Abstract
    An inverse dynamics musculoskeletal model of the lower extremity was combined with an optimization technique to estimate individual muscular forces and powers during stair ascent and descent. Eighteen Hill-type musculotendon actuators per leg were combined into the eleven functional muscle groups based on anatomical classification to drive the model in the sagittal plane. Simulation results illustrate the major functional differences in plantar flexors of the ankle and extensors of the knee and hip joints during ascent and descent. The results of this study not only could be employed to evaluate the rehabilitation results in the elderly but also could be used to design more anthropometric... 

    Biomechanical analysis for the study of muscle contributions to support load carrying

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 6 , 2010 , Pages 1287-1298 ; 09544062 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    Professional Engineering Publishing  2010
    Abstract
    The objective of this study was to quantify individual muscle function differences between level walking and backpack load carriage at the same speed by using a muscle-actuated forward dynamics simulation. As experimental investigations have revealed that backpack loads of up to 64 per cent of an individual's body mass have little effect on the sagittal plane gait kinema-tics, further biomechanical analyses are necessary to investigate the contributions of individual muscle coordination strategies to achieve a given motor task by mechanical power generation, absorption, and transference to each body segment. A biomechanical framework consisting of a musculoskeletal model actuated by 18... 

    Estimation of human lower extremity musculoskeletal conditions during backpack load carrying

    , Article Scientia Iranica ; Volume 16, Issue 5 B , 2009 , Pages 451-462 ; 10263098 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossughi, G. R ; Sharif University of Technology
    2009
    Abstract
    This paper focuses on the biomechanical aspects of the human lower extremity loading condition during backpack load carrying. A biomechanical framework was generated with the aim of employing a block-oriented structure of Simulink integrated with the Virtual Reality Toolbox of MATLAB software to provide a simulation study of the musculoskeletal system in a virtual environment. In this case, a ten-degrees-of-freedom musculoskeletal model actuated with sixteen muscles in each leg was utilized to simulate movement in the sagittal plane. An inverse dynamics based optimization approach was employed to estimate the excitation level of the muscles. In addition, distributions of the mechanical power... 

    Forward dynamics simulation of human walking employing an iterative feedback tuning approach

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 223, Issue 3 , 2009 , Pages 289-297 ; 09596518 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    Inverse dynamics analysis as well as the generation of an optimal goal oriented human motion both lead to the problem of finding suitable activations of the redundant muscles involved. This paper employs an iterative feedback tuning approach to perform the forward dynamics simulation of the human musculoskeletal system during level walking. A modified form of the proportional-integral-derivative (PID) controller is proposed to stabilize the movement and provide tracking of problems of the desired lower extremity joint profiles. Controller parameters were determined iteratively using an optimization algorithm to minimize tracking errors during forward dynamics simulation. Static optimization... 

    The effect of load carrying on the human lower extremity muscle activation during walking

    , Article 5th International Symposium on Mechatronics and its Applications, ISMA 2008, Amman, 27 May 2008 through 29 May 2008 ; October , 2008 ; 9781424420346 (ISBN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2008
    Abstract
    This paper focuses on the biomechanical aspects of human load carrying in order to provide a physiological framework for designing the more anthropometric assistive systems. An 8degrees-of-freedom musculoskeletal model with twenty functional muscle groups in the lower extremity was developed to simulate the movement in sagittal plane. Inverse dynamics based optimization approach was employed to estimate the excitation level of the muscles. Activation patterns of the muscles illustrate the importance role of the soleus in supporting of the body during load carrying. Also power distribution analysis of the muscles reveals that the plantar flexors of the ankle, extensors of the knee and hip... 

    Investigation of the micro-step control positioning system performance affected by random input signals

    , Article Mechatronics ; Volume 15, Issue 10 , 2005 , Pages 1175-1189 ; 09574158 (ISSN) Selk Ghafari, A ; Behzad, M ; Sharif University of Technology
    2005
    Abstract
    This paper gives the results of simulation and experimental investigation on the effects of random signals on the accuracy of micro-stepping control positioning. For studying and simulation of the effect of random noise signals on performance of the accurate position control systems, such as Hybrid Stepper Motors (HSMs), a micro-step driver and controlling unit using PID controller has been designed and constructed. Several parametric studies have been carried out including different white noise power and micro-step per revolution. Tracking problem for a HSM model has been simulated, and the experimental study for similar cases has been carried out by implementing the designed controller in... 

    Design and Construction of an Upper Extremity Wearable Exoskeleton for Rehabilitation of Stroke Patients

    , M.Sc. Thesis Sharif University of Technology Kalantari, Omid (Author) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    Exoskeleton is a wearable active device used to augment human power in upper or lower extremities. The integration of robotic devices and conventional physiotherapy is becoming more and more acceptable worldwide. The main scope of this thesis is to design and develop a prototype of a light, low-cost and wearable robotic exoskeleton to rehabilitate the upper extremity in stroke patients at home. For this purpose mechanism of a wearable exoskeleton will be proposed compatible with upper extremity degrees of freedoms with minimum number of actuators which is constructed inexpensively to eliminate the demand of expensive and professional therapists. The conceptual design of such a system should... 

    Vibration Analysis of Kish Island Elevated Water Storage Tank

    , M.Sc. Thesis Sharif University of Technology Nahumi, Hamid Reza (Author) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    Elevated water tanks are one of the most critical elements in civilized society to provide safe servicing resources of drinking water after natural and human-made disasters. Dynamic analysis plays a vital role in investigating structural behavior of the elevated storage system subjected to the earthquake-induced vibration. The main scope of this paper is to address the structural stability analysis of the Kish Island’s elevated reinforced concrete water tank employing finite element method. A complete solid model of the structure with detailed design was constructed, and finite element analysis was carried out utilizing ABAQUS software. To investigate the dynamic behavior of the structure, a... 

    Prediction of the lower extremity muscle forces during stair ascent and descent

    , Article 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008, 3 August 2008 through 6 August 2008, New York City, NY ; Volume 3, Issue PART B , 2009 , Pages 1589-1593 ; 9780791843253 (ISBN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Design Engineering Division, ASME ; Sharif University of Technology
    2009
    Abstract
    An inverse dynamics musculoskeletal model of the lower extremity was combined with an optimization technique to estimate individual muscular forces and powers during stair ascent and descent. Eighteen Hill-type musculotendon actuators per leg were combined into the eleven functional muscle groups based on anatomical classification to drive the model in the sagittal plane. Simulation results illustrate the major functional differences in plantar flexors of the ankle and extensors of the knee and hip joints during ascent and descent. The results of this study not only could be employed to evaluate the rehabilitation results in the elderly but also could be used to design more anthropometric... 

    Design and Fabrication of a Fish Robot

    , M.Sc. Thesis Sharif University of Technology Hosseini, Saeed (Author) ; Meghdari, Ali (Supervisor) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    In this research a robotic fish was designed and fabricated. For this propose different types of manufactured robotic fish were investigated and this model was developed and made with a one-piece flexible tail with an actuator that creates lateral movement through cable strings attached to the tail. Proposed mechanism has a simple, low cost structure that facilitates the control of the robotic fish movement. To control this robotic fish, a four-channel radio controller with 40 kHz frequency, was used. Swimming mode of this robotic fish is categorized in Subcarangiform swimming mode which is faster and has better maneuverability compared to its counterparts. It should be noted that the... 

    Variable Impedance Control of the Lower Limb Exoskeleton

    , Ph.D. Dissertation Sharif University of Technology Taherifar, Ali (Author) ; Vossoughi, Gholamreza (Supervisor) ; Selk Ghafari, Ali (Co-Advisor)
    Abstract
    Todays, the exoskeleton is known as a practical device for use in robotic rehabilitation and elderly assistance and has attracted the attention of many researchers. Impedance control is the most widely recognized control strategy in research on exoskeletons. Impedance control can properly handle soft interaction of robots with the environment. Optimal target impedance selection can increase the performance of the overall system and guarantee the stability. The main objective of this research was to introduce a variable impedance control system and verifying the presented control system on an exoskeleton. In this research, an exoskeleton with 4 active DoF and 8 semi-passive DoF is designed...