Loading...
Search for:
sepahvand--mehrdad
0.133 seconds
Total 148 records
The Impact of Human Capital on Labour Productivity in Manufacturing Sectors of Iran
,
M.Sc. Thesis
Sharif University of Technology
;
Sepahvand, Mehrdad
(Supervisor)
Abstract
This research has been surveyed the impact of intermediate skilled and high skilled human labor force on the productivity of manufacturing sectors by the Nelson & Phelps and also Lucas approaches. first model is related to the level of productivity and the second model is related to the growth of it. We has been prepared the needed statistics from the raw figures of iran statistics center. regression analysis has been done on the basis of panel data model by the use of stata software. the results show that not good efficiency to optimize technology factor of Cobb-Douglas model although it shows higher marginal labor productivity of high skilled human labor force. we has proposed some...
Study of Informational Cascades in Municipal Housing Demand of Iran
, M.Sc. Thesis Sharif University of Technology ; Sepahvand, Mehrdad (Supervisor)
Abstract
Real estate section is an integral part of any economy whose cycles have considerable effects on other different markets. It attracts much attention by various economy agents for different reasons. However, some specific features of the market render it prone to consecutive boom-bust cycles. Some of these features are originated from fundamental traits and especially building process and production technology of housing. Also, taking into account that real estate is considered an important asset; it is vulnerable to another factor which even exacerbates the cycles. This factor -Information cascade- makes cycles more unstable by causing "Herd behavior" which is the subject of study in this...
Dynamic Optimization Of Commercial Banks’ Liquidity Reserves (One Of Iranian Commercial Bank Case Studi)
, M.Sc. Thesis Sharif University of Technology ; Sepahvand, Mehrdad (Supervisor) ; Keshavarz Haddad, Gholamreza (Supervisor)
Abstract
Commercial banks have got an important role in our lives and every one can mention veriety functions for them. The more benefits can bring the more risks can couse as the old tradeoff between risk and return. One of the important risks that can bring about lots of problem for banking system is liquidity risk. Being not able to respond customers’ liquidity demand is named the liquidity risk. Banks keep some reserve in cental bank to respond other banks’ liquidity demands in payment system. Shortage of this reserve will cause customer and central bank punishments and penalties. Excess reserve on the other hand has opportunity cost. Hence an optimum amount of liquidity resrve must be held in...
Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application
, Article Nano ; Volume 12, Issue 1 , 2017 ; 17932920 (ISSN) ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
World Scientific Publishing Co. Pte Ltd
2017
Abstract
Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30nm to 1μm were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1min, where some of the desired nanostructures were obtained even in 1s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical...
Powder Compaction Simulation of Nonlinear Behavior of Material with Peridynamics Theory
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor)
Abstract
The present research focuses on the simulation of the metallic powder compaction process with the Peridynamics theory. Various methods are exploited to simulate this process in literature. Studying the nonlinear behavior of powders includes different phenomena such as dislocation and grain boundary, making it complicated. However, numerous research has been shaped to consider these phenomena on the micro-scale. There is also another batch of nano-scale studies underway. In this class of simulations, considering atoms as rigid particles, interatomic potentials, and molecular dynamics methods are used. Because of atomic-scale precision, this approach has very high accuracy. The massive...
Dynamics of Neural Fields Models With Delay
, M.Sc. Thesis Sharif University of Technology ; Fotuhi Firoozabad, Morteza (Supervisor)
Abstract
Neural field models with delays define a useful framework for modeling macroscopic parts of the cortex involving several populations of neurons. Nonlinear delayed integrodi fferential equations describe the spatio-temporal behavior of these fields. We also present a study of the numerical computation of these solutions in a special case. Another original contribution of ours is the definition of a Lyapunov functional and the result of stability it implies. We illustrate our work on a variety of examples that are relevant to modeling in neuroscience.
Synthesis and characterization of a new nanocomposite by filling of CNT with CoFe2O4 Magnetic nanoparticles and grafting to polymer
, Article Nano ; Volume 4, Issue 6 , 2009 , Pages 371-376 ; 17932920 (ISSN) ; Adeli, M ; Actinchap, B ; Bahari, A ; Sharif University of Technology
2009
Abstract
In this work, the synthesis and characterization of a new nanocomposite from carbon nanotubes-graft-polymer (CNTs-g-P) is reported. The products were obtained by the filling of multi-walled carbon nanotubes (MWCNTs) (inner diameter 2040 nm) with CoFe2O4 magnetic nanoparticles, been grafted with poly (caprolactone). The filling process was carried out by using acid treatment through wet chemistry. The structure and the properties of the new nanocomposite were studied with TEM, VSM, TGA, and spectroscopic techniques. © 2009 World Scientific Publishing Company
Flight envelope expansion in landing phase using classic, intelligent and adaptive controllers [electronic resource]
, Article Journal of aircraft ; 2006, Vol. 43, No. 1 ; Izadi, Hojjat Allah ; Pakme, Mehrdad
Abstract
An expanding flight envelope in the landing phase of a typical jet transport aircraft in presence of strong wind shears using a learning capable control system (LCCS) is investigated. The idea stems fromhuman beings functional architecture that gives them the ability to do more as they age and gain more experience. With the knowledge that classical controllers lack sufficient generality to cope with nonlinear as well as uncertain phenomenon such as turbulent air, the focuse is on different types of intelligent controllers due to their learning and nonlinear generalization capabilities as candidates for the landing flight phase. It is shown that the latter class of controllers could be used...
Optimal Design of the Heliostat Field in the Solar Central Receiver Systems
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
In a solar central system plant about 40% of energy losses occurs in the heliostat field. Furtheremore, half of the investment costs for construction of the plant is related to the heliostat field. Therefore, an optimal design of the heliostat field is necessary for reduction of levelized cost of energy in solar tower power plants. In this study, in order to optimally design the heliostat field, first energy performance of the helistat field in one year is simulated. Solar power and sun’s position at each moment of the day is determined by mathematical relations. Then, loss factors in the field are modelled and heliostat field layout is designed by an algorithm. Finally, by using PSO...
Modeling and Optimal Design of a Solar Chimney Power Plant
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
The power generation system of this type of power plants operates on the air flowing through the power plant’s chimney and colliding with the turbine blades within the chimney. When the solar collector warms the nearby air and thus expands the air by absorbing the sunlight, a difference is created in the density. Then, this difference in the density creates the phenomenon of buoyancy, making the air pass to the top of the chimney through the collector.This study simulated and optimized a solar chimney power plant. The simulation and optimization were performed based on the information of Manzanares Solar Chimney Power Plant in Spain (located in 150 km from the south of Madrid). It was...
An efficient graphyne membrane for water desalination
, Article Polymer ; Volume 175 , 2019 , Pages 310-319 ; 00323861 (ISSN) ; Moosavi, A ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Desalination of sea saline water seems a successful solution to supply clean water. For desalination, novel nanoporous membranes have been proposed as a substitute for the classic reverse osmosis (RO) membranes. The one-atom-thick graphyne membrane has shown great potential in water desalination. By applying functional groups (FGs) into the pores of the monolayer graphyne membranes, the water permeability and the ion rejection were passively increased. The effects of applying various FGs such as Hydrogen, Fluorine, Carboxyl and Amine, effect of the salt concentration, the applied pressure, and the effective diameter of the graphyne pores were determined by molecular dynamics (MD)...
Intelligent Control of Hybrid Vehicles based on the Simultaneous Optimization of Fuel Consumption and Pollution Emission
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
The issue under discussion in this paper is to optimize the fuel consumption of the Toyota Prius hybrid car. In order to solve this problem, the ADVISOR design model used by NREL in the Matlab / Simulink environment has been used. Various parts of this model are described. The optimization performed on this issue is based on the emotional controller. This controller works by simulating learning in animals based on encouraging and punishing them. With the introduction of the controller, the model and its inclusion in the fuel consumption control and its implementation have achieved good results. In the initial state and the controller in the model, the fuel consumption was 4.9 liters per 100...
Simulation and Multi-Objective Optimization of a Solar Micro CCHP Using Intelligent Techniques
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
Today, due to the scarcity of fossil energy resources, security of energy supply, and increasing environmental concerns, we need to develop new technologies to promote energy-saving and reduce greenhouse gas emissions. One of the suitable options for this purpose is to use the simultaneous production of electric power, cooling, and heating. Meanwhile, trigeneration systems that provide part of their energy needs from the sun, due to the free solar energy source and low environmental impact, can be an ideal technology for clean and safe scattered production. The present study has suggested a trigeneration system of cooling, heating, and power generation based on the organic Rankin cycle and...
Optimal Design of Induction MHD Generator for Electrical Power Generation from Exhaust of the Gas Turbine Power Plants
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
Today, due to increasing electricity consumption and demand, the use of conventional systems such as thermal, hydro and nuclear power plants is not enough to convert energy. Over the past century, scientists have sought to discover new technologies for exploiting different forms of energy and converting them into high-efficiency electrical energy. One of these ways is to use the phenomenon of magnetohydrodynamics (magnetic fluid dynamics) to convert thermal energy directly into electrical energy. Magnetohydrodynamics is a theoretical field that studies the dynamics of fluids with electrical conductivity. Induction magneto-hydrodynamic generators use ionized hot plasma (a quasi-neutral gas of...
Active Control of Drag Force in Automobile in Order to Reduce Fuel Consumption
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
In this thesis, an attempt has been made to provide a smart and innovative system to optimize fuel consumption in cars by using the combination of engineering sciences, aerospace, and machine learning. Considering the current challenges of societies, the economic importance of saving fuel, as well as recent developments in the fields of machine learning and reinforcement learning, this research tries to improve the performance of cars in order to minimize the air resistance force of car bodies. In this regard, deep neural networks have been used to learn the dynamics of aerodynamic forces and reinforcement learning algorithms, especially DDPG (Deep Deterministic Policy Gradient), have been...
Design and Implementation of a Linear, 1 Watt, High Efficiency Power Amplifier with Controllable Output Power for UHF-RFID Application
, M.Sc. Thesis Sharif University of Technology ; Sharifbakhtiar, Mehrdad (Supervisor)
Abstract
Design and implementation of an efficient, 1 Watt, linear power amplifier (PA) with CMOS technology for UHF-RFID applications is presented in this thesis. Poor quality factor of inductors, high substrate noise and low breakdown voltage of CMOS, makes the implementation of Watt-level PAs challenging on this technology. Also the trade-off between linearity and efficiency, further hardens achieving an efficient high power linear PA. So the literature was reviewed first to come up with the appropriate structure of a linearized efficient PA. Afterwards, the structure was reformed and optimized for the application mentioned above with reasonable stability margins. Baseband relevant blocks were...
Design of a Wide Band Power Amplifier for Power DAC
, M.Sc. Thesis Sharif University of Technology ; Sharifbakhtiar, Mehrdad (Supervisor)
Abstract
Today’s radio transmitters must be able to send information in several standards. One problem involved in these wide band electronic systems lies in its end part, ie power amplifier. To have a broad band width either switching must be made among several power amplifiers with narrow band width (tuned) or the transistor part of power amplifier must be the same and single and selection be made only among matching networks. In this thesis, a power amplifier with broad band width without requiring a matching network has been designed and laid out. Also considering the low breakdown voltage of the gate oxide of the today’s standard CMOS transistors, it is very difficult to get a high output power...
Optimal Design of Permanent Magnet Vernier Generator for Wind Power Plants Application
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
In recent decades, renewable energy resources (especially wind power as the fastest-growing energy source) have increasingly been employed for providing electrical energy all over the world given to the rising energy demands, reduction in non-renewable fossil fuels as well as severe restrictions applied to the utilization of these fuels because of their contribution in environmental pollution, generating greenhouse gas emissions, and consequently earth warming. The main factors in the development of wind energy systems to date are the easy access to this energy source in all seasons and its cost-effectiveness compared to other counterparts. One of the key components utilized for converting...
Design of a HEV’s Controller Using Learning-based Methods
, M.Sc. Thesis Sharif University of Technology ; Boroushaki, Mehrdad (Supervisor)
Abstract
Hybrid electric vehicles (HEV) are proving to be one of the most promising innovations in advanced transportation systems to reduce air pollution and fossil fuel consumption. EMS is one of the most vital aspects of the HEV powertrain system. This research aims to design an optimal EMS under the condition of meeting the goals of drivability control, fuel consumption reduction, and battery charge stability. The current EMS is based on the classical rule-based method derived from fuzzy logic, which guides to the suboptimal solution in episodic driving cycles. Previous experiences in implementing Reinforcement Learning (RL) suffer from late convergence, instability in tracking the driving...
The Effect of Nominal Price on Stock Returns in Tehran Stock Exchange
, M.Sc. Thesis Sharif University of Technology ; Ebrahimnejad, Ali (Supervisor) ; Barakchian, Mahdi (Co-Supervisor) ; Keshavarz Haddad, Gholamreza (Co-Supervisor)
Abstract
Based on modern finance theory, valuation should not depend on nominal stock prices. However, evidence shows that the nominal price of stocks does matter in the U.S. stock market. In this paper, we examine the effect of nominal share prices on stock returns, using data between 2009 and 2017 form the Tehran Stock Exchange. Our results indicate that there is no significant relationship between nominal price and return on the Tehran Stock Exchange. By controlling for different important variables, the return differential between high price and low price stocks is insignificant and the results are robust to various specifications and tests. Furthermore, by using event study under the market...