Loading...
Search for:
sepehrinia--kazem
0.134 seconds
Total 108 records
Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation
, Article Applied Surface Science ; Volume 371 , 2016 , Pages 349-359 ; 01694332 (ISSN) ; Mohammadi, A ; Sharif University of Technology
Elsevier
2016
Abstract
Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the...
Improving tribological behavior of friction stir processed A413/SiCp surface composite using MoS2 lubricant particles
, Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 27, Issue 2 , 2017 , Pages 298-304 ; 10036326 (ISSN) ; Shamanian, M ; Sadeghian, M ; Sepehrinia, P ; Sharif University of Technology
Nonferrous Metals Society of China
2017
Abstract
The effect of MoS2 lubricant particles on the microstructure, microhardness and tribological behavior of A413/SiCp surface composite, fabricated via friction stir processing (FSP), was studied. For this purpose, the FSP was carried out with tool rotational speed of 1600 r/min, tool travel speed of 25 mm/min and tool tilt angle of 3° through only a “single pass”. The optical and scanning electron microscopies, microhardness and reciprocating wear tests were used to characterize the samples. The results showed that the addition of MoS2 lubricant particles to A413/SiCp surface composite leads to the decrease of friction coefficient and mass loss. In fact, the generation of mechanically mixed...
Numerical simulation of the localization of elastic waves in two- and three-dimensional heterogeneous media
, Article Physical Review B - Condensed Matter and Materials Physics ; Volume 78, Issue 2 , 2008 ; 10980121 (ISSN) ; Rahimi Tabar, M. R ; Sahimi, M ; Sharif University of Technology
2008
Abstract
Localization of elastic waves in two-dimensional (2D) and three-dimensional (3D) media with random distributions of the Lamé coefficients (the shear and bulk moduli) is studied, using extensive numerical simulations. We compute the frequency dependence of the minimum positive Lyapunov exponent γ (the inverse of the localization length) using the transfer-matrix method, the density of states utilizing the force oscillator method, and the energy-level statistics of the media. The results indicate that all the states may be localized in the 2D media, up to the disorder width and the smallest frequencies considered, although the numerical results also hint at the possibility that there might be...
Dynamic renormalization group analysis of propagation of elastic waves in two-dimensional heterogeneous media
, Article Physical Review B - Condensed Matter and Materials Physics ; Volume 77, Issue 1 , 2008 ; 10980121 (ISSN) ; Bahraminasab, A ; Sahimi, M ; Rahimi Tabar, M. R ; Sharif University of Technology
2008
Abstract
We study localization of elastic waves in two-dimensional heterogeneous solids with randomly distributed Lamé coefficients, as well as those with long-range correlations with a power-law correlation function. The Matin-Siggia-Rose method is used, and the one-loop renormalization group (RG) equations for the coupling constants are derived in the limit of long wavelengths. The various phases of the coupling constants space, which depend on the value ρ, the exponent that characterizes the power-law correlation function, are determined and described. Qualitatively different behaviors emerge for ρ<1 and ρ>1. The Gaussian fixed point (FP) is stable (unstable) for ρ<1 (ρ>1). For ρ<1, there is a...
Numerical Simulation of Compressible Magnetohydrodynamic Flow Using Spectral Difference Method on Quadrilateral Grids
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present work, the numerical solution of 2D inviscid compressible Magneto-hydrodynamic flow is performed by using the spectral difference (SD) method on quadrilateral grids. In this numerical method, similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the concept of the discontinuous and high-order local representations is used to achieve conservation property and high-order accuracy. In the SD method, the test function or the surface integral is not involved and thus it has a simpler formulation than the DG and SV methods. In this numerical method, two sets of structured points, namely unknown points and flux points, are defined in each cell to support the...
Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary...
Implementing Appropriate Numerical Filters in the Lattice Boltzmann Method for Solving Multiphase Incompressible Flows with Large Density Ratio
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, two finite-difference lattice Boltzmann methods (FDLBM) are applied and assessed for the simulation of two-phase liquid-vapor flows with high density ratios. For this aim, the He-Shan-Doolen type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting system of equations are discretized by using the second-order central difference and modified Lax-Wendroff schemes. Suitable numerical dissipation terms and filters are applied to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interface region of the two phases.Three...
Synthesis and Study of Catalytic Activity of Iron (III)-bis(2-oxazolinyl) Methane complex by Urea Hydrogen Peroxide in Oxidation of Sulfides
, M.Sc. Thesis Sharif University of Technology ; Bagherzadeh, Mojtaba (Supervisor)
Abstract
Considerable effort has been directed in recent years towards the transition metal complex catalyzed oxidation of organic compounds. Herein the synthsis of the iron complex of bis(oxazoline) ligand as a novel catalyst is reported, and the catalytic activity of this complex in oxidation of sulfides is investigated. Bis(2-oxazolynil)methane as ligand is prepared by condensation of diethylmalonate with 2-aminoethanole in 1:2 molar ratio and finally corresponding complex is synthesized by the reaction between FeCl3.6H2O and Bis(2-Oxazolynil)methane in 1:1 molar ratio. The complex is characterized by using IR, UV-Vis, cyclic voltametery, conductometery and elemental analysis data. Moreover,...
Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization
, Ph.D. Dissertation Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds...
Numerical Simulation of Natural Convection Using Smoothed Particle Hydrodynamics with Artificial Compressibility Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this research, the numerical simulation of the natural convection is performed by using the smoothed particle hydrodynamics based on the artificial compressibility method. For this aim, the formulation of the artificial compressibility method in the Eulerian reference frame for the mass and momentum equations is written in the Lagragian reference frame and the Lagrangin form of the energy equation is also considered to compute the thermal effects. The benefit of the artificial compressibility-based incompressible SPH (ACISPH) method over the weakly compressible SPH (WCSPH) method for computing the natural convection is that there is no need in the formulation considered here to use any...
Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow...
Numerical Simulation of Shock-Disturbances Interaction in 2-D Compressible Flows Considering Real Gas Effects by Using WENO Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the present study, the shock-disturbances interaction in hypersonic inviscid flows considering real gas effects is numerically studied by using a high-order WENO scheme. To account for real gas effects, the equilibrium air model is utilized. The strong conservative form of the two-dimensional unsteady Euler equations in the generalized curvilinear coordinates is considered as the governing equations and a shock-capturing technique is applied. The resulting system of equations is discretized by using the fifth-order WENO finite-difference scheme in space and the explicit third-order TVD Runge-Kutta scheme in time to provide a high-order accurate flow solver. The WENO scheme is a stable scheme...
Investigation on Wettability Alteration of Reservoir Rocks by Functionalized Silica Nanoparticles using Molecular Dynamics Simulations
, M.Sc. Thesis Sharif University of Technology ; Mohammadi, Aliasghar (Supervisor) ; Seyfkordi, Aliakbar (Supervisor)
Abstract
The properties of 3 nm-diameter fluorinated silica nanoparticles with different coverage percent of CF3 groups as water and oil repellents were investigated at the water-rock and decane-rock interface using molecular dynamics simulation. Simulating a pore of rock in presence of water and decane molecules separately, resulted in liquid bridging for both of liquids. The density profiles of liquids in the pore clearly show several highly ordered layers packing of the molecules close to the rock surface. Distribution of liquid molecules around the nanoparticles is much influenced with increasing CF3 groups on the nanoparticle surface. Results show that adsorption of functionalized silica...
Exact Lyapunov exponent of the harmonic magnon modes of one-dimensional Heisenberg-Mattis spin glasses
, Article Physical Review B - Condensed Matter and Materials Physics ; Volume 77, Issue 10 , 2008 ; 10980121 (ISSN) ; Niry, M. D ; Bozorg, B ; Rahimi Tabar, M. R ; Sahimi, M ; Sharif University of Technology
2008
Abstract
A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are...
Numerical Solution of Hypersonic Axisymmetric Flows Including Real Gas Effects Using Compact Finite-Difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables...
The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables...
Developing a Compact Finite Difference Method for Solving Fluid - Solid Interaction in Incompressible Flow
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, fluid-solid interaction (FSI) is simulated computationally by using a high-order accurate numerical method. The two-dimensional incompressible viscous flows are considered in the fluid domain. The primary problem with solutions of the incompressible Navier–Stokes equations is the difficulty of coupling changes in the velocity field with changes in the pressure field while satisfying the continuity equation. Herein, the artificial compressibility method is used to overcome this difficulty. Preconditioning is implemented to reduce the stiffness of the system of equations to increase the convergence rate of the solution. Using preconditioning, physical solutions even at low...
Numerical Simulation Cavitating Flows Using Compact Finite-difference Scheme
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the study, the simulation of two-dimensional cavitating flows is performed by applying a high-order accurate numerical method to the preconditioned, homogenous, multiphase Navier-Stokes equations. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A coordinate transformation is applied and the resulting system of governing equations in curvilinear coordinates is discretized using a fourth-order compact finite-difference scheme. The high-order accurate numerical scheme employing the suitable linear and nonlinear filters to account for density jumps across the cavity interface is shown to yield an...
Numerical Simulation of Incompressible Flows over two Dimensional Geometries by Means of Immersed Boundary Method
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
Two-dimensional incompressible flow analysis is one the most important applied issues in engineering and applied science field. Numerical solution of governing equations of flow requires exact computational grid generation.In complex geometries, generation of the grid which is coincident to the body is very difficult and time consuming. Immersed boundary method is an appropriate superseded method of body conformal grid generation in flow field numerical solution. In this method a grid which is not coincidentto bodyis generated and flow field properties are modified on points adjacent to the boundary of the object (Ghost Cell Method) to satisfy boundary conditions.
The purpose of this...
The purpose of this...
Numerical Simulation of Cavitating Flows with Compressibility Effects
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In this study, the numerical simulation of cavitating flows with compressibility effects is performed. The algorithm employs the multiphase Euler equations with homogeneous equilibrium model. The baseline differential equations system is similar to the one-phase system of equations and comprised of the mixture density, mixture momentums and mixture energy equations. Thephases considered for cavitating flows is liquid-vapor and liquid-gas fields. The system of governing equations is discretized using a cell-centered finite volume AUSM’s upwind scheme. The computations are presented for steady noncavitating/cavitating flows around 1D/2Dproblems for different conditions. A sensitivity study is...
Numerical Simulation of Turbulent Cavitating Flows Using Two-Equation k-ϵ Turbulence Model
, M.Sc. Thesis Sharif University of Technology ; Hejranfar, Kazem (Supervisor)
Abstract
In the current study, the numerical simulation of the turbulent cavitating flows is performed by solving the preconditioned, homogenous, multiphase Navier-Stokes equations. For the turbulence modeling, the standard two-equation k-ϵ model is used. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations together with two equations for the turbulence kinetic energy k and the turbulence energy dissipation rate ϵ. For the calculation of the eddy viscosity near the wall boundary, appropriate turbulence damping functions are applied to modify the source terms of the ϵ equation. The system of governing equations is...