Loading...
Search for: shadman--d
0.123 seconds

    A non-homogeneous Hill's equation

    , Article Applied Mathematics and Computation ; Volume 167, Issue 1 , 2005 , Pages 68-75 ; 00963003 (ISSN) Shadman, D ; Mehri, B ; Sharif University of Technology
    2005
    Abstract
    The existence of periodic solutions for a forced Hill's equation is proved. The proof is then extended to the case of a non-homogeneous matrix valued Hill's equation. Under the stated conditions, using Lyapunov's criteria [Proc. AMS 13 (1962) 601; Hill's Equation, Interscience Publishers, New York, 1966] some results on the stability oh Hill's equation are obtained. © 2004 Elsevier Inc. All rights reserved  

    Adaptive thermal modeling of Li-ion batteries

    , Article Electrochimica Acta ; Volume 102 , 2013 , Pages 183-195 ; 00134686 (ISSN) Shadman Rad, M ; Danilov, D. L ; Baghalha, M ; Kazemeini, M ; Notten, P. H. L ; Sharif University of Technology
    2013
    Abstract
    An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials' details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent... 

    A change point method for monitoring generalized linear profiles in phase I

    , Article Quality and Reliability Engineering International ; Volume 31, Issue 8 , 2015 , Pages 1367-1381 ; 07488017 (ISSN) Shadman, A ; Mahlooji, H ; Yeh, A. B ; Zou, C ; Sharif University of Technology
    2015
    Abstract
    The Phase I applications of the statistical profile monitoring have recently been extended to the case when the response variable is binary. We are motivated to undertake the current research in an attempt to try to provide a unified framework for the Phase I control in the context of statistical profile monitoring that can be used to tackle a large class of response variables, such as continuous, count, or categorical response variables. The unified framework is essentially based on applying the change point model to the class of generalized linear models. The proposed Phase I control chart is assessed and compared with the existing charts under binomial and Poisson profiles. Some... 

    A change point method for phase II monitoring of generalized linear profiles

    , Article Communications in Statistics: Simulation and Computation ; Volume 46, Issue 1 , 2017 , Pages 559-578 ; 03610918 (ISSN) Shadman, A ; Zou, C ; Mahlooji, H ; Yeh, A. B ; Sharif University of Technology
    2017
    Abstract
    In this article, we adopt the change point approach to monitor the generalized linear profiles in phase II Statistical process control (SPC). Generalized linear profiles include a large class of profiles defined in one framework. In contrast to the conventional change point approach, we adopt the Rao score test rather than the likelihood ratio test. Simulated results show that our approach has a good performance over any possible single step change in process parameters for two special cases of generalized linear profiles, namely Poisson and binomial profiles. Some diagnostic aids are also given and a real example is introduced to shed light on the merits of our approach in real... 

    Thermal Behavior of Rechargeable Li-ion Batteries; Experimental Evaluations and Modeling

    , Ph.D. Dissertation Sharif University of Technology Shadman Rad, Mojtaba (Author) ; Baghalha, Morteza (Supervisor) ; Kazemeini, Mohammad (Co-Advisor)
    Abstract
    The main objective of this research is to experimentally evaluate thermal behavior of commercially available rechargeable Li-ion batteries based on minimum measurements on main battery parameters and then develop experimental based models to investigate their thermal behavior. Li-ion batteries with Graphit anodes and Li(Ni0.8¬Co0.15Al0.05)O2 cathodes will be used for this purpose. Voltage and temperature developments during cycling under various currents at controlled ambient temperatures are measured by battery tester. Measurements show that temperature evolutions demonstrate falls and rises at specific State-of-Charge (SoC) of the battery during cycling and therefore some heat consumers... 

    Monitoring Generalized Linear Profiles Using Change-Point Approach

    , M.Sc. Thesis Sharif University of Technology Shadman, Alireza (Author) ; Mahlooji, Hashem (Supervisor) ; Akhavan Niaki, Taghi (Co-Advisor)
    Abstract
    There are many cases in industrial and non-industrial sections where the quality characteristics are in the form of profiles. A profile is the functional relationship between a response variable and one or more predictor variables used to describe the quality of a process. Profile monitoring is the implementation of statistical process control techniques for this purpose. According to the type of relationship between response variable and predictor variables, profiles are classified into many categories such as: simple linear profiles, multiple linear profiles, nonlinear profiles and generalized linear profiles. Most of the research efforts in the area of profile monitoring have been... 

    Modeling Kidney Vascular Structure Based on Parametric L-system

    , M.Sc. Thesis Sharif University of Technology Shadman, Shahriar (Author) ; Farhadi, Fatolah (Supervisor) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Kidney is one of the most complicated organs in terms of functionality and physiology due to its complicated unique vascular structure. Previous investigations have focused on specific characteristics like length and diameter. Most of these methods are based on Image Processing techniques which prevent a comprehensive study in growth and changes of the vascular system. Lindenmyaer system (L-system) is a parallel rewriting system and a type of formal grammar and had been used to create graphs and natural patterns. By absorbing the physiological characteristics of the kidney and integrating them into parametric L-system, a highly dense and accurate vascular system could be generated with few... 

    Developing a novel colloidal model for predicting asphaltene precipitation from crude oil by alkane dilution

    , Article Journal of Molecular Liquids ; Volume 318 , 2020 Shadman, M. M ; Badizad, M. H ; Dehghanizadeh, M ; Saeedi Dehaghani, A. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This research aims to propose a thermodynamic model for predicting asphaltene precipitation upon diluting a crude oil with a paraffinic solvent. To this end, a thorough mathematical formulation was carried out to derive a novel micellization model based on the associative properties of asphaltenic compounds. It was assumed that asphaltenes exist in the oil both as monomeric molecules and aggregated cores; with stabilization latter by attachment of resin on its periphery. The aggregation equilibrium was established by taking into account asphaltene's lyophobic tendency, heat of resin adsorption, and interfacial tension between micelle and oil media which is the main driving factor... 

    Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows

    , Article European Journal of Computational Mechanics ; Volume 28, Issue 6 , 2020 , Pages 541-572 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    In this work, we attempted to develop an Implicit Coupled Density-Based (ICDB) solver using LU-SGS algorithm based on the AUSM+ up scheme in OpenFOAM. Then sonicFoam solver was modified to include viscous dissipation in order to improve its capability to capture shock wave and aerothermal variables. The details of the ICDB solver as well as key implementation details of the viscous dissipation to energy equation were introduced. Finally, two benchmark tests of hypersonic airflow over a flat plate and a 2-D cylinder were simulated to show the accuracy of ICDB solver. To verify and validate the ICDB solver, the obtained results were compared with other published experimental data. It was... 

    Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM

    , Article European Journal of Computational Mechanics ; Volume 29, Issue 1 , 2020 , Pages 1-26 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A. R ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    The performance of a gas centrifuge that is used for isotopes separation is dependent on the gas flow inside it. In this study, for modeling the UF6 gas flow, an Implicit Coupled Density-Based (ICDB) solver, was developed in OpenFOAM. To validate the ICDB solver, the gas flow within the rotor in total reflux state was compared with the analytical solution obtained by Onsager model and the numerical solution obtained by the Fluent software. The results showed that the ICDB solver had acceptable accuracy and validity. Also the computational efficiency of Roe, AUSM (Advection Upstream Splitting Method) and AUSM+ up schemes were compared. The results showed AUSM+ up scheme is efficient. Then,... 

    Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge

    , Article Annals of Nuclear Energy ; 2020 Ghazanfari, V ; Akbar Salehi, A ; Reza Keshtkar, A ; Mahdi Shadman, M ; Hossein Askari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    UF6 gas flow in the total regions of a rotor with the radius of 0.1 m and the length of 1 m in axisymmetric and steady states was simulated using a new hybrid CFD-DSMC method in the OpenFOAM framework. Implicit coupled density-based scheme was performed for CFD method, and Variable Hard Sphere (VHS) and diffuse model were employed in DSMC method. Also, as an initial estimation, the local Knudsen number was applied to determine the interface location between the continuum-rarefied regions (r = 0.0855 m). Then it was modified (r = 0.084 m) to reduce the computational cost. The comparison results of pure CFD and CFD-DSMC methods illustrated that there were large differences between the flow... 

    Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge

    , Article Annals of Nuclear Energy ; Volume 152 , 2021 ; 03064549 (ISSN) Ghazanfari, V ; Akbar Salehi, A ; Reza Keshtkar, A ; Mahdi Shadman, M ; Hossein Askari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    UF6 gas flow in the total regions of a rotor with the radius of 0.1 m and the length of 1 m in axisymmetric and steady states was simulated using a new hybrid CFD-DSMC method in the OpenFOAM framework. Implicit coupled density-based scheme was performed for CFD method, and Variable Hard Sphere (VHS) and diffuse model were employed in DSMC method. Also, as an initial estimation, the local Knudsen number was applied to determine the interface location between the continuum-rarefied regions (r = 0.0855 m). Then it was modified (r = 0.084 m) to reduce the computational cost. The comparison results of pure CFD and CFD-DSMC methods illustrated that there were large differences between the flow... 

    Data science and predictive analytics : biomedical and health applications using R

    , Book Dinov, Ivo D
    Springer International Publishing AG  2018

    Synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA

    , Article Minerals Engineering ; Volume 17, Issue 1 , 2004 , Pages 89-92 ; 08926875 (ISSN) Keshavarz Alamdari, E ; Moradkhani, D ; Darvishi, D ; Askari, M ; Behnian, D ; Sharif University of Technology
    2004
    Abstract
    Simultaneous extraction of zinc and cadmium by a mixture of di-2-ethyl hexyl phosphoric acid (DEHPA) and mono-2-ethyl hexyl phosphoric acid (MEHPA), and the synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA have been investigated. It was shown that the extraction of zinc and cadmium by DEHPA and/or MEHPA can be increased by an increase of pH. The results also illustrate that the pH0.5 of zinc, by increase in MEHPA from 0.1 to 8 vol%, did not vary significantly while that of cadmium varies from 0.63 to 2.4. In other words MEHPA prevents selective extraction of zinc from aqueous media containing both zinc and cadmium. Studies on the selective separation parameter... 

    MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]

    , Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 Abbasi, M ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
    2014
    Abstract
    The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained... 

    Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method

    , Article Modern Physics Letters B ; Volume 35, Issue 31 , 2021 ; 02179849 (ISSN) Hosseinzadeh, S ; Hosseinzadeh, K ; Rahai, M ; Ganji, D. D ; Sharif University of Technology
    World Scientific  2021
    Abstract
    In the last decade, many potent analytical methods have been utilized to find the approximate solution of nonlinear differential equations. Some of these methods are energy balance method (EBM), homotopy perturbation method (HPM), variational iteration method (VIM), amplitude frequency formulation (AFF), and max-min approach (MMA). Besides the methods mentioned above, the Akbari-Ganji method (AGM) is a highly efficient analytical method to solve a wide range of nonlinear equations, including heat transfer, mass transfer, and vibration problems. In this study, it was constructed the approximate analytic solution for movement of two mechanical oscillators by employing the AGM. In the derived... 

    A compiler for multi-key homomorphic signatures for Turing machines

    , Article Theoretical Computer Science ; Volume 889 , 2021 , Pages 145-170 ; 03043975 (ISSN) Dolatnezhad Samarin, S ; Fiore, D ; Venturi, D ; Amini, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    At SCN 2018, Fiore and Pagnin proposed a generic compiler (called “Matrioska”) allowing to transform sufficiently expressive single-key homomorphic signatures (SKHSs) into multi-key homomorphic signatures (MKHSs) under falsifiable assumptions in the standard model. Matrioska is designed for homomorphic signatures that support programs represented as circuits. The MKHS schemes obtained through Matrioska support the evaluation and verification of arbitrary circuits over data signed from multiple users, but they require the underlying SKHS scheme to work with circuits whose size is exponential in the number of users, and thus can only support a constant number of users. In this work, we propose... 

    Ride comfort of high-speed trains travelling over railway bridges

    , Article Vehicle System Dynamics ; Volume 43, Issue 3 , 2005 , Pages 173-197 ; 00423114 (ISSN) Kargarnovin, M. H ; Younesian, D ; Thompson, D ; Jones, C ; Sharif University of Technology
    Taylor and Francis Ltd  2005
    Abstract
    The ride comfort of high-speed trains passing over railway bridges is studied in this paper. A parametric study is carried out using a time domain model. The effects of some design parameters are investigated such as damping and stiffness of the suspension system and also ballast stiffness. The influence of the track irregularity and train speed on two comfort indicators, namely Sperling's comfort index and the maximum acceleration level are also studied. Two types of railway bridges, a simple girder and an elastically supported bridge are considered. Timoshenko beam theory is used for modelling the rail and bridge and two layers of parallel damped springs in conjunction with a layer of mass... 

    Heat transfer hybrid nanofluid (1-Butanol/MoS2–Fe3O4) through a wavy porous cavity and its optimization

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; 2020 Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, D. D ; Sharif University of Technology
    Emerald Group Holdings Ltd  2020
    Abstract
    Purpose: The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2–Fe3O4 hybrid nanoparticles. Design/methodology/approach: The domain of interest is bounded by constant temperature horizontal corrugated surfaces and isothermal vertical flat surfaces. The numerical outputs are explained in the type of isotherms, streamline and average Nusselt number with variations of the Rayleigh number, Hartmann number, nanoparticle shape factor and porosity of the porous medium. For solving the governing equations, the finite... 

    Detection of ammonia gas by knudsen thermal force in micro gas actuator

    , Article Case Studies in Thermal Engineering ; Volume 12 , 2018 , Pages 276-284 ; 2214157X (ISSN) Mahyari, A ; Barzegar Gerdroodbary, M ; Mosavat, M ; Ganji, D. D ; Sharif University of Technology
    2018
    Abstract
    Direct Simulation Monte Carlo (DSMC) method is applied to evaluate the performance of a new micro gas sensor (MIKRA) for mass analysis of ammonia in the rarefied gas. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equation is applied to obtain high precision results. This study performed comprehensive studies to reveal the main mechanism of force generation and applied this for the analysis of the gas mixture. Our findings show that value of generated Knudsen force significantly varies when the percentage of the NH3 varies in the mixture. According to obtained results, the maximum Knudsen force increases when the fraction of the ammonia decreases. Our findings...