Loading...
Search for: shadman--shahriar
0.111 seconds

    Reducing the Flow Rate of Short Circuit Fault Current at the Output of the High Voltage Power Supply

    , M.Sc. Thesis Sharif University of Technology Zibarzani, Ali (Author) ; Kaboli, Shahriar (Supervisor)
    Abstract
    In this research, we have presented a method to delay the propagation of fault current in high voltage power supplies. Common protection methods usually protect the load and do not protect the power supply itself well. In this research, our goal was to propose a method to prevent the short circuit fault current from reaching the power supply elements. At first, the available methods to limit the fault current and protect the high voltage power sources were studied and investigated. Then, using the transmission line theory, a ladder filter was designed as an alternative to the normal filter at the output of the power supply. In the next step, using software simulation, the performance of the... 

    A non-homogeneous Hill's equation

    , Article Applied Mathematics and Computation ; Volume 167, Issue 1 , 2005 , Pages 68-75 ; 00963003 (ISSN) Shadman, D ; Mehri, B ; Sharif University of Technology
    2005
    Abstract
    The existence of periodic solutions for a forced Hill's equation is proved. The proof is then extended to the case of a non-homogeneous matrix valued Hill's equation. Under the stated conditions, using Lyapunov's criteria [Proc. AMS 13 (1962) 601; Hill's Equation, Interscience Publishers, New York, 1966] some results on the stability oh Hill's equation are obtained. © 2004 Elsevier Inc. All rights reserved  

    Analysis of a Ultra Narrow Pulse Width High Voltage Generator

    , M.Sc. Thesis Sharif University of Technology Farajzadeh Galeh, Amin (Author) ; Kaboli, Shahriar (Supervisor)
    Abstract
    A Tesla charged PFL Bipolar pulsed power generator has been successfully designed and simulated. The compact Tesla transformer that it employs has successfully charged capacitive loads to peak voltages up to 0.6 MV . The Tesla–driven PFL generator is capable of producing a voltage impulse approaching .3 MV with generating a peak electrical power of up to 1.8 GW for 5 ns when connected to a matched resistive load. Potentially for medical application, a bipolar former has been designed and successfully simulated as an extension to the system and to enable the generation of a sinusoid-like voltage impulse with a peak-to-peak value reaching 600 kV and having a frequency bandwidth beyond 1 GHz.... 

    Design and Implement of Very Low Frequency AC Voltage Source

    , M.Sc. Thesis Sharif University of Technology Fathollahi, Mohammad Mahdi (Author) ; Kaboli, Shahriar (Supervisor)
    Abstract
    With the expansion of the use of electric energy, the importance of sustainable supply of this energy has been revealed. The task of supplying this energy is with power systems, therefore, for a stable supply of electrical energy, it is necessary to continuously monitor the systems. Power systems are composed of various destructible components such as cables. There are various methods and tests for maintaining and monitoring power cables. One of the daily maintenance methods of alternating current cables is called very low frequency testing. The main advantage of this test is the small and portable nature of the test equipment. In this thesis, the design of a very low frequency alternating... 

    Bayesian Filtering Approach to Improve Gene Regulatory Networks Inference Using Gene Expression Time Series

    , M.Sc. Thesis Sharif University of Technology Fouladi, Ramouna (Author) ; Fatemizadeh, Emadoddin (Supervisor) ; Arab, Shahriar (Co-Advisor)
    Abstract
    Gene regulatory modeling in different species is one of the main aims of Bioinformatics. Regarding the limitations of the data available and the perspectives which should be taken into account for modeling such networks, proposed methods up to now have not yet been successful in yielding a comprehensive model. In one of the recent researches, the Gene regulation process is considered as a nonlinear dynamic stochastic process and described by state space equations. Afterwards, in order for the unknown parameters to be estimated, Extended Kalman Filtering is used. In this thesis, first of all, Gene complexes are taken into consideration instead of genes and afterwards, Extended Kalman... 

    A change point method for monitoring generalized linear profiles in phase I

    , Article Quality and Reliability Engineering International ; Volume 31, Issue 8 , 2015 , Pages 1367-1381 ; 07488017 (ISSN) Shadman, A ; Mahlooji, H ; Yeh, A. B ; Zou, C ; Sharif University of Technology
    2015
    Abstract
    The Phase I applications of the statistical profile monitoring have recently been extended to the case when the response variable is binary. We are motivated to undertake the current research in an attempt to try to provide a unified framework for the Phase I control in the context of statistical profile monitoring that can be used to tackle a large class of response variables, such as continuous, count, or categorical response variables. The unified framework is essentially based on applying the change point model to the class of generalized linear models. The proposed Phase I control chart is assessed and compared with the existing charts under binomial and Poisson profiles. Some... 

    A change point method for phase II monitoring of generalized linear profiles

    , Article Communications in Statistics: Simulation and Computation ; Volume 46, Issue 1 , 2017 , Pages 559-578 ; 03610918 (ISSN) Shadman, A ; Zou, C ; Mahlooji, H ; Yeh, A. B ; Sharif University of Technology
    2017
    Abstract
    In this article, we adopt the change point approach to monitor the generalized linear profiles in phase II Statistical process control (SPC). Generalized linear profiles include a large class of profiles defined in one framework. In contrast to the conventional change point approach, we adopt the Rao score test rather than the likelihood ratio test. Simulated results show that our approach has a good performance over any possible single step change in process parameters for two special cases of generalized linear profiles, namely Poisson and binomial profiles. Some diagnostic aids are also given and a real example is introduced to shed light on the merits of our approach in real... 

    Numerical and Experimental Analysis of Biomechanical Behavior in Persian Fixation Method for Distal Humerus Fractures

    , M.Sc. Thesis Sharif University of Technology Hakiminejad, Alireza (Author) ; Nourani, Amir (Supervisor) ; Shahriar Kamrani, Reza (Supervisor)
    Abstract
    Distal humerus fractures commonly take place in adults with low bone mineral density causing major technical challenges upon orthopedic surgeons. Persian fixation method was introduced as a novel technique to stabilize small fragments in comminuted distal humerus fractures using a set of K-wires and reconstruction plate. The objective of the present study is to measure the stiffness and stability of this technique and analyze the effect of influential parameters with numerical simulation and biomechanical testing on a cadaveric specimen. Furthermore, we were able to propose new method to model plastic deformation of implants in surgery.Validation of the finite element (FE) model was... 

    Monitoring Generalized Linear Profiles Using Change-Point Approach

    , M.Sc. Thesis Sharif University of Technology Shadman, Alireza (Author) ; Mahlooji, Hashem (Supervisor) ; Akhavan Niaki, Taghi (Co-Advisor)
    Abstract
    There are many cases in industrial and non-industrial sections where the quality characteristics are in the form of profiles. A profile is the functional relationship between a response variable and one or more predictor variables used to describe the quality of a process. Profile monitoring is the implementation of statistical process control techniques for this purpose. According to the type of relationship between response variable and predictor variables, profiles are classified into many categories such as: simple linear profiles, multiple linear profiles, nonlinear profiles and generalized linear profiles. Most of the research efforts in the area of profile monitoring have been... 

    Thermal Behavior of Rechargeable Li-ion Batteries; Experimental Evaluations and Modeling

    , Ph.D. Dissertation Sharif University of Technology Shadman Rad, Mojtaba (Author) ; Baghalha, Morteza (Supervisor) ; Kazemeini, Mohammad (Co-Advisor)
    Abstract
    The main objective of this research is to experimentally evaluate thermal behavior of commercially available rechargeable Li-ion batteries based on minimum measurements on main battery parameters and then develop experimental based models to investigate their thermal behavior. Li-ion batteries with Graphit anodes and Li(Ni0.8¬Co0.15Al0.05)O2 cathodes will be used for this purpose. Voltage and temperature developments during cycling under various currents at controlled ambient temperatures are measured by battery tester. Measurements show that temperature evolutions demonstrate falls and rises at specific State-of-Charge (SoC) of the battery during cycling and therefore some heat consumers... 

    Modeling Kidney Vascular Structure Based on Parametric L-system

    , M.Sc. Thesis Sharif University of Technology Shadman, Shahriar (Author) ; Farhadi, Fatolah (Supervisor) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Kidney is one of the most complicated organs in terms of functionality and physiology due to its complicated unique vascular structure. Previous investigations have focused on specific characteristics like length and diameter. Most of these methods are based on Image Processing techniques which prevent a comprehensive study in growth and changes of the vascular system. Lindenmyaer system (L-system) is a parallel rewriting system and a type of formal grammar and had been used to create graphs and natural patterns. By absorbing the physiological characteristics of the kidney and integrating them into parametric L-system, a highly dense and accurate vascular system could be generated with few... 

    Protein Function Prediction Using Protein Structure and Computational Methods

    , M.Sc. Thesis Sharif University of Technology Abbasi Dezfouli, Mohammad Ebrahim (Author) ; Fatemizadeh, Emad (Supervisor) ; Arab, Shahriar ($item.subfieldsMap.e)
    Abstract
    Predicting the Amino Acids that have a catalytic effect in the enzymes, is a big step in appointing the activity of the enzymes and classifying them. This is a very challenging job, because an Amino Acid can appear in a variety of active sites.The biological activity of a protein usually depends on the existence of a small number of Amino Acids. Detecting these Amino Acids from the sequence of Amino Acids has many applications. Usually, the Amino Acids that are preserved are known as the Amino Acids that build up the active site, but the algorithms for finding the preserved Amino Acids are much more complex. There are a lot of algorithms for predicting the active sites of Amino Acids, but... 

    Developing a novel colloidal model for predicting asphaltene precipitation from crude oil by alkane dilution

    , Article Journal of Molecular Liquids ; Volume 318 , 2020 Shadman, M. M ; Badizad, M. H ; Dehghanizadeh, M ; Saeedi Dehaghani, A. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This research aims to propose a thermodynamic model for predicting asphaltene precipitation upon diluting a crude oil with a paraffinic solvent. To this end, a thorough mathematical formulation was carried out to derive a novel micellization model based on the associative properties of asphaltenic compounds. It was assumed that asphaltenes exist in the oil both as monomeric molecules and aggregated cores; with stabilization latter by attachment of resin on its periphery. The aggregation equilibrium was established by taking into account asphaltene's lyophobic tendency, heat of resin adsorption, and interfacial tension between micelle and oil media which is the main driving factor... 

    Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows

    , Article European Journal of Computational Mechanics ; Volume 28, Issue 6 , 2020 , Pages 541-572 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    In this work, we attempted to develop an Implicit Coupled Density-Based (ICDB) solver using LU-SGS algorithm based on the AUSM+ up scheme in OpenFOAM. Then sonicFoam solver was modified to include viscous dissipation in order to improve its capability to capture shock wave and aerothermal variables. The details of the ICDB solver as well as key implementation details of the viscous dissipation to energy equation were introduced. Finally, two benchmark tests of hypersonic airflow over a flat plate and a 2-D cylinder were simulated to show the accuracy of ICDB solver. To verify and validate the ICDB solver, the obtained results were compared with other published experimental data. It was... 

    Adaptive thermal modeling of Li-ion batteries

    , Article Electrochimica Acta ; Volume 102 , 2013 , Pages 183-195 ; 00134686 (ISSN) Shadman Rad, M ; Danilov, D. L ; Baghalha, M ; Kazemeini, M ; Notten, P. H. L ; Sharif University of Technology
    2013
    Abstract
    An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials' details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent... 

    Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM

    , Article European Journal of Computational Mechanics ; Volume 29, Issue 1 , 2020 , Pages 1-26 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A. R ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    The performance of a gas centrifuge that is used for isotopes separation is dependent on the gas flow inside it. In this study, for modeling the UF6 gas flow, an Implicit Coupled Density-Based (ICDB) solver, was developed in OpenFOAM. To validate the ICDB solver, the gas flow within the rotor in total reflux state was compared with the analytical solution obtained by Onsager model and the numerical solution obtained by the Fluent software. The results showed that the ICDB solver had acceptable accuracy and validity. Also the computational efficiency of Roe, AUSM (Advection Upstream Splitting Method) and AUSM+ up schemes were compared. The results showed AUSM+ up scheme is efficient. Then,... 

    Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge

    , Article Annals of Nuclear Energy ; 2020 Ghazanfari, V ; Akbar Salehi, A ; Reza Keshtkar, A ; Mahdi Shadman, M ; Hossein Askari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    UF6 gas flow in the total regions of a rotor with the radius of 0.1 m and the length of 1 m in axisymmetric and steady states was simulated using a new hybrid CFD-DSMC method in the OpenFOAM framework. Implicit coupled density-based scheme was performed for CFD method, and Variable Hard Sphere (VHS) and diffuse model were employed in DSMC method. Also, as an initial estimation, the local Knudsen number was applied to determine the interface location between the continuum-rarefied regions (r = 0.0855 m). Then it was modified (r = 0.084 m) to reduce the computational cost. The comparison results of pure CFD and CFD-DSMC methods illustrated that there were large differences between the flow... 

    Investigation of the continuum-rarefied flow and isotope separation using a hybrid CFD-DSMC simulation for UF6 in a gas centrifuge

    , Article Annals of Nuclear Energy ; Volume 152 , 2021 ; 03064549 (ISSN) Ghazanfari, V ; Akbar Salehi, A ; Reza Keshtkar, A ; Mahdi Shadman, M ; Hossein Askari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    UF6 gas flow in the total regions of a rotor with the radius of 0.1 m and the length of 1 m in axisymmetric and steady states was simulated using a new hybrid CFD-DSMC method in the OpenFOAM framework. Implicit coupled density-based scheme was performed for CFD method, and Variable Hard Sphere (VHS) and diffuse model were employed in DSMC method. Also, as an initial estimation, the local Knudsen number was applied to determine the interface location between the continuum-rarefied regions (r = 0.0855 m). Then it was modified (r = 0.084 m) to reduce the computational cost. The comparison results of pure CFD and CFD-DSMC methods illustrated that there were large differences between the flow...