Loading...
Search for: shaghaghi--hoora
0.058 seconds

    Intracranial Pressure and Temperature Control

    , M.Sc. Thesis Sharif University of Technology Shaghaghi, Tahereh (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In this thesis, simulation and control of intracranial pressure and temperature has been studied. Common methods for control of intracranial pressure and temperature are hypothermia treatment and drug therapy. Hypothermia is a clinical treatment for cooling the patient body with cold water-circulating blanket to decompress intracranial pressure by decreasing body temperature. In order to simulate the patient body, two mathematical models for single-input single-output and multi-input multi-output systems that are proposed in the literature are chosen. The thermodynamic- hemodynamic model was simulated as single-input single-output system and the thermodynamic- hemodynamic- pharmacokinetic... 

    The prediction of amino proton chemical shifts using optimally selected wave function

    , Article Concepts in Magnetic Resonance Part A: Bridging Education and Research ; Volume 38 A, Issue 2 , 2011 , Pages 25-32 ; 15466086 (ISSN) Shaghaghi, H ; Iravani, M ; Tafazzoli, M ; Sharif University of Technology
    2011
    Abstract
    Gas phase amino proton chemical shifts in the 54 of amines have been predicted using Gauge-independent atomic orbital (GIAO) method and optimally selected wave function. The effects of electron correlation, triple-ξ valance shell, diffuse function, and polarization function on calculated amino proton chemical shifts have been investigated using factorial design as a multivariate technique. Different optimized wave functions for different groups of amines were recommended. A wave function as the best level of the theory is proposed for homologue amines covered. In this context, B3LYP/6-311+G and HF/6-311+G wave functions have been recommended as the best and the most efficient level of theory... 

    Quantitative prediction of 13C NMR chemical shifts in solvent using PCM-ONIOM method and optimally selected wave function

    , Article Concepts in Magnetic Resonance Part A: Bridging Education and Research ; Volume 42 A, Issue 1 , FEB , 2013 , Pages 1-13 ; 15466086 (ISSN) Shaghaghi, H ; Fathi, F ; Ebrahimi, H. P ; Tafazzoli, M ; Sharif University of Technology
    2013
    Abstract
    The wave functions for calculating 13C nuclear magnetic chemical shifts of 22 groups of organic compounds (64 molecules) in chloroform solution have been optimally selected using factorial design as a multivariate technique. Our own N-layered integrated molecular orbital and molecular mechanics approach was applied for molecules with different types of carbons. The results have obtained in very good agreement with the experimental values. An additional series (58 molecules) have been used as test sets and their results confirm the validity and reliability of the approaches. The total root mean square deviation and correlation coefficient of predictions (433 carbons) are 1.88 and .9994,... 

    A survey of wave function effects on theoretical calculation of gas phase 19F NMR chemical shifts using factorial design

    , Article Journal of Fluorine Chemistry ; Volume 131, Issue 1 , 2010 , Pages 47-52 ; 00221139 (ISSN) Shaghaghi, H ; Ebrahimi, H ; Tafazzoli, M ; Jalali-Heravi, M ; Sharif University of Technology
    2010
    Abstract
    The wave functions for calculating gas phase 19F chemical shifts were optimally selected using the factorial design as a multivariate technique. The effects of electron correlation, triple-ξ valance shell, diffuse function, and polarization function on calculated 19F chemical shifts were discussed. It is shown that of the four factors, electron correlation and the polarization functions affect the results significantly. B3LYP/6-31 + G(df,p) wave functions have been proposed as the best and the most efficient level of theory for calculating 19F chemical shifts. An additional series of fluoro compounds were used as a test set and their predicted 19F chemical shifts values confirmed the... 

    Prediction of Gas Phase NMR Chemical Shifts Using Gas Phase NMR and Quantum Calculations in Optimally Selected Level of Theory by Factorial Design

    , Ph.D. Dissertation Sharif University of Technology Shaghaghi, Hoora (Author) ; Tafazzoli, Mohsen (Supervisor) ; Jalali Heravi, Mehdi (Supervisor)
    Abstract
    The optimum wave functions and calculation method were obtained using a 24 factorial design. Based on preliminary experiences, the following four factors at two level was selected: electron correlation, triple-ξ valence shell, diffuse function and polarization function.
    The wave functions for calculating gas phase 1H chemical shifts of primary and secondary alcohols were optimized using factorial design as multivariate technique. Gas-phase experimental 1H chemical shifts of 18 alcohols were used to establish the best levels of theory for obtaining 1H chemical shift, among them the new experimental values of 1H chemical shifts of 10 alcohols were obtained in our laboratory. HF/6-31G(d,p)... 

    Layer selection effect on solid state 13C and 15N chemical shifts calculation using ONIOM approach

    , Article Solid State Nuclear Magnetic Resonance ; Volume 51-52 , 2013 , Pages 31-36 ; 09262040 (ISSN) Shaghaghi, H ; Ebrahimi, H. P ; Bahrami Panah, N ; Tafazzoli, M ; Sharif University of Technology
    2013
    Abstract
    Solid state 13C and 15N chemical shifts of uracil and imidazole have been calculated using a 2-layer ONIOM approach at 32 levels of theory. The effect of electron correlation between two layers has been investigated by choosing two different kinds of layer selection. Factorial design has been applied as a multivariate technique to analyze the effect of wave function and layer selection on solid state 13C and 15N chemical shifts calculations. PBEPBE/6-311+G(d,p) was recommended as an optimally selected level of theory for high layer in both models. It is illustrated that considering the electron correlation of two layers of ONIOM models is important factor to calculate solid state 15N... 

    A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory

    , Article Journal of Computational Chemistry ; Volume 37, Issue 14 , 2016 , Pages 1296-1305 ; 01928651 (ISSN) Shaghaghi, H ; Ebrahimi, H. P ; Fathi, F ; Bahrami Panah, N ; Jalali Heravi, M ; Tafazzoli, M ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of 13Cα chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of 13Cβ, and 1Hα chemical shifts nor on the variation of absolute deviation of 13Cα chemical shifts relative to ψ dihedral angle. The 13Cα absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of...