Loading...
Search for: shahmansouri--afsaneh
0.123 seconds

    Design of Optimum Nanoantenna Arrays for Detection Applications

    , Ph.D. Dissertation Sharif University of Technology Armand, Mohammad Javad (Author) ; Rashidian, Bijan (Supervisor) ; Shahmansouri, Afsaneh (Co-Supervisor)
    Abstract
    The main goal of this thesis is introducing a method to design optimum nanoantenna arrays for detection applications. The proposed method is based on the multiple-scattering T-matrix in connection with the Ewald method. The formulation is systematic, quite general, easily traceable, and fast. Its high speed of analysis makes it well suited to design optimizations.In particular, we calculate multiple-scattering terms of the T-matrix formulation with the Ewald method. To the best of our knowledge no report on derivation of the T-matrix of a 3D (or even 2D) periodic array from the T-matrix of the isolated element, based on Ewald method has been reported before.Finally, a software has been... 

    Design of Plasmonic Nanostructures for Improving the Detection in Raman Spectroscopy

    , Ph.D. Dissertation Sharif University of Technology Khajeahsani, Mohammad Sadegh (Author) ; Rashidian, Bizhan (Supervisor) ; Shahmansouri, Afsaneh (Co-Advisor)
    Abstract
    Excitation of Localized Surface Plasmons, which is one of the features of the metal nanostructures, results in the confinement of light in the dimensions smaller than the incidence wavelength, and even lower than the fundamental diffraction limit. This property causes electric field enhancement at surface, helping the occurrence of Surface Enhanced Raman Scattering (SERS). The amount of electric field enhancement and its resonance frequency depend on the type of material, its geometrical properties and its shape, and the arrangement of the scattering particles. Also, properties of surrounding environment material and the type of the excited mode of the structure, and the incidence wave... 

    Investigation of a quasi-3D plasmonic nanostructure for TE and TM polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 11 , 2014 , p. 2838-2844 Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    2014
    Abstract
    Quasi-3D plasmonic nanostructures consisting of a metallic film perforated as an array of nanoholes, separated by a gap from a nanodisk array, are theoretically investigated under plane wave illumination with transverse electric and transverse magnetic polarizations. The results are compared with the results of a simple nanodisk array. A full discussion involving the couplings between plasmon resonance in nanodisks, surface plasmon polaritons on the interfaces of metallic film, and different diffractive grating orders that contribute in the couplings will be presented. The large difference between the plasmon behavior of the nanodisk array alone and nanodisk array in the presence of nanohole... 

    Enhanced optical transmission through metallic holes array: role of te polarization in spp excitation

    , Article Plasmonics ; Volume 8, Issue 2 , June , 2013 , Pages 403-409 ; 15571955 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    2013
    Abstract
    Optical transmission through double-layer metallic subwavelength holes array is studied under oblique incidence by split-field finite-difference time-domain method. Both TM and TE polarizations are investigated. It is proved that the transmission peaks can also be observed for TE polarization due to the excitation of surface plasmon polaritons (SPP) through diffraction orders. By changing the incident angle, these transmission peaks follow the SPP wavelength shift. The field profiles, even for the field components not present in the incident field, clearly show the SPP excitation. The mechanism of enhanced transmission will be fully discussed  

    GPU implementation of split-field finite difference time-domain method for drudelorentz dispersive media

    , Article Progress in Electromagnetics Research ; Volume 125 , 2012 , Pages 55-77 ; 10704698 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    2012
    Abstract
    Split-field finite-difference time-domain (SF-FDTD) method can overcome the limitation of ordinary FDTD in analyzing periodic structures under oblique incidence. On the other hand, huge run times of 3D SF-FDTD, is practically a major burden in its usage for analysis and design of nanostructures, particularly when having dispersive media. Here, details of parallel implementation of 3D SF-FDTD method for dispersive media, combined with totalfield/ scattered-field (TF/SF) method for injecting oblique plane wave, are discussed. Graphics processing unit (GPU) has been used for this purpose, and very large speed up factors have been achieved. Also a previously reported formulation of SF-FDTD based... 

    Comprehensive three-dimensional split-field finitedifference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 28, Issue 11 , 2011 , Pages 2690-2700 ; 07403224 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2011
    Abstract
    The three-dimensional split-field finite-difference time-domain (SF-FDTD) method is combined with the totalfield- scattered-field method for injecting a plane wave. A formulation is derived for calculating the incidence transformed fields of SF-FDTD on a one-dimensional auxiliary grid. The resulting fields obtained in the scattered zone are used to calculate the far fields, based on a proposed fully time-domain near-to-far-field transformation. The far-field information is used to calculate the extinction cross section of the periodic structure under oblique incidence. To analyze metallic periodic structures, a formulation with a reduced number of variables is proposed based on the auxiliary... 

    Behavior of plasmonic nanoparticle array in near- and far-field coupling regimes for transverse electric and transverse magnetic polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 8 , 2013 , Pages 2286-2291 ; 07403224 (ISSN) Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    We have previously reported the results of plasmonic behavior of an Au nanodisk array in the far-field coupling regime under oblique illumination with transverse electric polarization. In this paper, those results are studied in more detail. Here, results for transverse magnetic polarization are also presented and discussed. In addition to the far-field coupling regime, the results for the near-field coupling regime are also reported. Effects of different parameters, such as substrate thickness and array periodicity on the shape of plasmon spectra are discussed. It will be shown that in the far-field coupling regime, the diffractive grating orders can have a major role in the behavior of the... 

    Tunable wide-band graphene plasmonic nano-color-sorter: Application in scanning near-field optical microscopy

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 2 , 2019 , Pages 435-442 ; 07403224 (ISSN) Heydarian, H ; Yazdanfar, P ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    Tunability of the Fermi level of graphene is exploited to implement a plasmonic nano-color-sorter for scanning near-field optical microscope (SNOM) applications capable of handling large tip sample couplings. Nano-color-sorting has been used in SNOM through creating multiple spatially separated hot spots for different incident wavelengths. We show that in the presence of high-refractive-index samples an unwanted redshift in the spectral response of the dual-color probe occurs. This limitation can be compensated for using graphene and adjusting its chemical potential to obtain a blueshift in probe spectral response. The Method of Moments analysis technique is employed to engineer the probe... 

    Modified distributed mediation device for low power consumption in large scale sensor networks

    , Article 2nd International Conference on Intelligent Sensing and Information Processing, ICISIP'05, Chennai, 4 January 2005 through 7 January 2005 ; Volume 2005 , 2005 , Pages 7-12 ; 0780388402 (ISBN); 9780780388406 (ISBN) Shahmansouri, V ; Ghannad Rezaie, M ; Pakravan, H. R ; Sharif University of Technology
    2005
    Abstract
    This paper proposes a new medium-access control (MAC) protocol designed for wireless sensor networks. A wireless sensor network is an array of large number of sensors interconnected by a multi-hop ad-hoc network. The fundamental objective for sensor network is low-power consumption while latency is usually less important. This characteristic of sensor network motivates different MAC laver design from the conventional wireless network to reduce power consumption. In this paper novel algorithm based on distributed mediation device (DMD) protocol has been introduced that utilized distributed node scheduling strategy to dramatically increase energy saving principally in intermediate devices... 

    Modified fresnel zone plate - an example for systematic excitation of subradiant modes of a plasmonic structure

    , Article IEEE Journal of Quantum Electronics ; Volume 53, Issue 2 , 2017 ; 00189197 (ISSN) Armand, M. J ; Khajeahsani, M. S ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Subradiant modes can exhibit sharper spectral response, and lower radiative loss compared to the super-radiant modes of plasmonic nanostructures. Selective excitation of these modes is challenging, and has practical importance. In this paper, a systematic procedure for determining, and individually exciting the subradiant modes of a plasmonic nanostructure is presented by utilizing our previously reported T-matrix formulation. As an example, we calculate various modes of a gold nanodimer, and determine the incident field required for exciting a subradiant mode of this nanostructure. This field is then generated by a modified zone plate lens. The expansion of scattered field, as well as the... 

    Investigation of the Seismic Behavior of the Soil-Pile System with Three-Dimensional Nonlinear Modeling

    , M.Sc. Thesis Sharif University of Technology Afsaneh Borzeshi, Sajjad (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    A large number of structures and substructures, such as piles, have damaged or even yielded the entire structure during seismic loading. The kinematic interaction of piles under seismic loading has been widely studied from analytical, experimental, and numerical perspectives. In numerical modeling, most existing literature relies on simplified approaches to describe the soil-pile interaction, which leads to the need for more reliable and comprehensive research. In this research, the seismic response of the soil-pile system was investigated through a fully nonlinear three-dimensional numerical analysis in the time domain using the FLAC3D program. This model simulates the dependence of soil... 

    A two-layer attack-robust protocol for IoT healthcare security: Two-stage identification-authentication protocol for IoT

    , Article IET Communications ; Volume 15, Issue 19 , 2021 , Pages 2390-2406 ; 17518628 (ISSN) Afsaneh, S ; Sepideh, A ; Ali, M ; Salah, A. M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The majority of studies in the field of developing identification and authentication protocols for Internet of Things (IoT) used cryptographic algorithms. Using brain signals is also a relatively new approach in this field. EEG signal-based authentication algorithms typically use feature extraction algorithms that require high processing time. On the other hand, the dynamic nature of the EEG signal makes its use for identification/authentication difficult without relying on feature extraction. This paper presents an EEG-and fingerprint-based two-stage identification-authentication protocol for remote healthcare, which is fast, robust, and multilayer-based. A modified Euclidean distance... 

    A two-layer attack-robust protocol for IoT healthcare security: Two-stage identification-authentication protocol for IoT

    , Article IET Communications ; Volume 15, Issue 19 , 2021 , Pages 2390-2406 ; 17518628 (ISSN) Afsaneh, S ; Sepideh, A ; Ali, M ; Al-Majeed, S ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The majority of studies in the field of developing identification and authentication protocols for Internet of Things (IoT) used cryptographic algorithms. Using brain signals is also a relatively new approach in this field. EEG signal-based authentication algorithms typically use feature extraction algorithms that require high processing time. On the other hand, the dynamic nature of the EEG signal makes its use for identification/authentication difficult without relying on feature extraction. This paper presents an EEG-and fingerprint-based two-stage identification-authentication protocol for remote healthcare, which is fast, robust, and multilayer-based. A modified Euclidean distance... 

    Production of Biodiesel Using Eggshell as Catalyst

    , M.Sc. Thesis Sharif University of Technology Khatibi, Maryam (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    The aim of this project is to investigate and synthesize CaO-based nanocatalysts derived from chicken eggshell calcination with alkali metals and sodium-potassium compounds promoters used in the transesterification reaction of canola oil and methanol. Sections of this thesis include the synthesis of nanocatalysts, catalyst characterization tests, and investigation of reaction under optimal conditions. Two groups of catalysts containing different weight percentages of alkali metals based on CaO and 1 %wt sodium-potassium based on CaO with different weight percentages of these two elements were synthesized by wet impregnation method and used in the reaction under optimum condition. Catalyst... 

    Effect of Selected Promotors on the Electrocatalytic Performance in Oxygen Evolution Reaction

    , M.Sc. Thesis Sharif University of Technology Yousefi, Zahra (Author) ; Ghotbi, Cyrus (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    During the last few decades, efforts have been made to replace fossil fuels with clean and non-absorbent energy sources. One of the promising strategies is energy production by hydrogen storage using water splitting. For this purpose, different methods of using light, heat and electricity are provided. Electrolysis of water with a simple environment such as very high purity of hydrogen produced, controllable, device, no need for high temperature and pressure in the reactor and huge potential for industrial applications has been very much considered. Water electrolysis consists of two reactions: reduction of water to hydrogen (HER) and oxidation of water to oxygen (OER). The second reaction... 

    Synthesis and Evaluation of Nanostructured Magnetic Photocatalysts for Oxidation Desulfurization of Liquid Fuels

    , M.Sc. Thesis Sharif University of Technology Salehian, Siamak (Author) ; Ghotbi, Sirous (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    In recent decades, desulfurization processes have become necessary to reduce environmental pollution due to fuel sulfur emissions. In this research, in order to photocatalytic oxidation desulfurization of liquid fuel, a model fuel (normal octane) under visible light irradiation of 250 W sodium lamp, using H2O2 oxidant and methanol solvent in the presence of BMO/Fe@MIL(x%) composite. BMO and Fe@MIL were investigated. From the tests, X-ray diffraction, scanning and transmission electron microscope imaging, absorption and desorption of nitrogen gas, infrared spectrometer-Fourier transform, visible-ultraviolet reflection spectroscopy, optical radiation spectroscopy and vibration magnetometer in... 

    Oxidation Desulfurization of Liquid Fuels Using TiO2-based Photocatalysts

    , M.Sc. Thesis Sharif University of Technology Ostovar, Abdollah (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    Due to the increasing consumption of fuel, the use of new methods with high efficiency to remove sulfur from fossil fuels is felt more than ever. Hydrogenation and oxidation of sulfur organic matter, such as thiophenes, is an old method of desulfurization of liquid fuels. Using a photocatalyst, everything can be done in an environment that is very low cost. In this study, the photocatalytic elimination of dibenzothiophene was investigated. For this purpose, carbon-doped thiamine dioxide was used as the photocatalytic base, which is synthesized by hydrothermal method. This method is the same source of titanium and carbon. To increase the performance of the catalyst, platinum metal was loaded... 

    Photocatalytic Conversion of Carbon Dioxide to Value-Added Products Using Pt Containing Catalysts

    , M.Sc. Thesis Sharif University of Technology Moradi, Mohsen (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    The conversion of CO2 gas into value-add chemicals known as solar fuel technology attracted much consideration from the beginning of the 21st century owing to the potential of this technology in solving the climate change and energy shortage issues. In the present study, a well-known photocatalyst, TiO2, was doped with Bismuth element and was subjected to Pt nanoparticles loading as a cocatalyst to boost the photocatalytic CO2 conversion. Pristine TiO2 and Bi-doped samples were prepared by sol gel method. Then, a facile photo-deposition method was employed to introduce Pt onto the surface of TiO2. Various characterization techniques including XRD, DRS, BET, PL, FTIR, FESEM and TEM, were used... 

    Design of Plasmonic Systems for Nanobiophotonic Applications

    , Ph.D. Dissertation Sharif University of Technology Shahmansouri, Afsaneh (Author) ; Rashidian, Bizhan (Supervisor) ; Vosoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    In this thesis periodic plasmonic nanostructures are studied for detection of biological specious. The behavior of metal nanostructure arrays under normal incidence has been widely reported. However, simulation of periodic dispersive structures under oblique incidence requires newer formulations. Formulations, and algorithms based on modified split-field finite-difference time-domain (SF-FDTD) method are introduced, permitting analysis of metallic nanostructures arrays under oblique incidence. These novel algorithms are practically implemented on a parallel processing system based on graphics processing unit (GPU). Test and verification of these formulations are done by analyzing referenced... 

    Hydrogen Production by Aqueous Phase reforming of Glycerol Over Supported Platinum Catalysts

    , Ph.D. Dissertation Sharif University of Technology Larimi, Afsaneh Sadat (Author) ; Kazemeini, Mohammad (Supervisor) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    The aqueous phase reforming (APR) of glycerol is an attractive yet challenging pathway to convert abundant biomass into value added hydrogen. Pt catalysts have received attention due to their ability to produce hydrogen-rich gas under APR conditions. In this work, the conversion of glycerol into hydrogen is demonstrated using Pt0.05CexZr0.95-xO2 (x=0, 0.29, 0.475, 0.66 and 0.95) solid solution catalysts and a series of M-doped Pt-MgO (M = Pd, Ir, Re, Ru, Rh and Cr) sheet-shaped nano-catalysts. Both characteristic (XRD, BET, H2-TPR, CO-chemisorption, TEM and XPS) and reactivity measurements were used to investigate the activity of the catalysts. Results indicated that reactivity depended on...