Loading...
Search for: shahverdi--h
0.198 seconds

    Commutativity Pattern of Finite Non-Abelian p-Groups Determine Their Orders

    , Article Communications in Algebra ; Volume 41, Issue 2 , 2013 , Pages 451-461 ; 00927872 (ISSN) Abdollahi, A ; Akbari, S ; Dorbidi, H ; Shahverdi, H ; Sharif University of Technology
    2013
    Abstract
    Let G be a non-abelian group and Z(G) be the center of G. Associate a graph ΓG (called noncommuting graph of G) with G as follows: Take G{set minus}Z(G) as the vertices of ΓG, and join two distinct vertices x and y, whenever xy ≠ yx. Here, we prove that "the commutativity pattern of a finite non-abelian p-group determine its order among the class of groups"; this means that if P is a finite non-abelian p-group such that ΓP ≅ ΓH for some group H, then {pipe}P{pipe} = {pipe}H{pipe}  

    A new reduced-order modeling approach based on fluid eigenmodes and boundary element method

    , Article 23rd AIAA Applied Aerodynamics Conference, Toronto, ON, 6 June 2005 through 9 June 2005 ; Volume 2 , 2005 , Pages 1245-1252 ; 10485953 (ISSN) Behbahani Nejad, M ; Nobari, A. S ; Shahverdi, H ; Haddadpour, H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    This paper presents a new reduced-order modeling approach based on boundary element method. In this approach the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is possible to obtain satisfactory results without static correction technique when enough eigenmodes are used. In addition to the conventional method, Eigenanalysis and reduced-order modeling of unsteady flows over a NACA 0012 airfoil and a wing with NACA 0012 section are performed using this new ROM method. Numerical examples are presented that demonstrate the accuracy and... 

    Application of the modified reduced-order aerodynamics modelling approach to aeroelastic analysis

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 223, Issue 3 , 2009 , Pages 257-270 ; 09544100 (ISSN) Shahverdi, H ; Salehzadeh Nobari, A ; Haddadpour, H ; Behbahani Nejad, M ; Sharif University of Technology
    2009
    Abstract
    This study presents the application of the Proposed Modified Reduced-Order Aerodynamics Modelling approach for aeroelastic analysis based on the boundary element method (BEM) as a novel approach. The used BEM has the capability to capture the thickness effect and geometric complexity of a general three-dimensional model. In this approach the reduced-order aerodynamic model is defined through the eigenvalue problem of unsteady flow based on the unknown wake singularities. Based on the used aerodynamic model an explicit algebraic form of the aeroelastic equations is derived that reduces computational efforts and complexity. This special feature enables us to determine the aeroelastic... 

    Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model

    , Article Journal of Fluids and Structures ; Volume 25, Issue 8 , 2009 , Pages 1243-1257 ; 08899746 (ISSN) Shahverdi, H ; Salehzadeh Noubari, A ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper presents a coupled flap-lag-torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton-Raphson method. Numerical results comprising steady equilibrium... 

    An efficient reduced-order modelling approach based on fluid eigenmodes and boundary element method

    , Article Journal of Fluids and Structures ; Volume 23, Issue 1 , 2007 , Pages 143-153 ; 08899746 (ISSN) Shahverdi, H ; Nobari, A. S ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2007
    Abstract
    This paper presents an efficient reduced-order modelling approach based on the boundary element method. In this approach, the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is possible to obtain satisfactory results without using the static correction technique when enough eigenmodes are used. In addition to the conventional method, eigenanalysis and reduced-order modelling of unsteady flows over a NACA 0012 airfoil, a wing with NACA 0012 section and a wing-body combination are performed using the proposed reduced order modelling... 

    The effect of higher order harmonics on second order nonlinear phenomena

    , Article Optics Communications ; Volume 343 , May , 2015 , Pages 124-130 ; 00304018 (ISSN) Shahverdi, A ; Borji, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A new method which is a combination of the harmonic balance and finite difference techniques (HBFD) is proposed for complete time-harmonic solution of the nonlinear wave equation. All interactions between different harmonics up to an arbitrary order can be incorporated. The effect of higher order harmonics on two important nonlinear optical phenomena, namely, the second harmonic generation (SHG) and frequency mixing is investigated by this method and the results are compared with well-known analytical solutions. The method is quite general and can be used to study wave propagation in all nonlinear media  

    Fabrication of Micron Resolution Polymer Structures with Electrohydrodynamic Printing

    , M.Sc. Thesis Sharif University of Technology Shahverdi, Mohammad (Author) ; Movahedi, Mohammad Reza (Supervisor)
    Abstract
    In recent years, additive manufacturing has been widely used in prototyping and production of industrial-commercial pieces. Additive manufacturing or three-dimensional (3D) printing is able to easily produce any piece for initial prototyping, no matter how complex it is. The fused deposition modeling (FDM) is a type of additive manufacturing process that produces the piece with the mechanism of feeding the PLA filament, then the molten polymer extrusion and depositing the fluid layer by layer with a high viscosity. Since the thickness of the layers is directly proportional to the diameter of the nozzle and the diameter of the used nozzles cannot be in the micron range (lower than 100... 

    Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Shahverdi, M ; Seifi, S ; Akbari, A ; Mohammadi, K ; Shamloo, A ; Movahhedy, M. R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers’ attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the... 

    Development of a novel cervix-inspired tortuous microfluidic system for efficient, high-quality sperm selection

    , Article Lab on a Chip ; Volume 23, Issue 13 , 2023 , Pages 3080-3091 ; 14730197 (ISSN) Dadkhah, E ; Hajari, M. A ; Abdorahimzadeh, S ; Shahverdi, A ; Esfandiari, F ; Ziarati, N ; Taghipoor, M ; Montazeri, L ; Sharif University of Technology
    Royal Society of Chemistry  2023
    Abstract
    Microfluidic systems have been extensively studied in recent years as potential alternatives for problematic conventional methods of sperm selection. However, despite the widespread use of simple straight channels in these systems, the impact of channel geometry on selected sperm quality has not been thoroughly investigated. To explore this further, we designed and fabricated serpentine microchannels with different radii of curvature, inspired by the tortuous structure of the cervix. Our results showed that in the presence of gentle backflow, microfluidic channels with a 150 μm radius of curvature significantly enhanced the quality of selected sperms when compared to straight channels.... 

    Microfluidics: the future of sperm selection in assisted reproduction

    , Article Andrology ; 2023 ; 20472919 (ISSN) Jahangiri, A. R ; Ziarati, N ; Dadkhah, E ; Numan Bucak, M ; Rahimizadeh, P ; Shahverdi, A ; Sadighi gilani, M. A ; Rezaei Topraggaleh, T ; Sharif University of Technology
    John Wiley and Sons Inc  2023
    Abstract
    Background: Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles.... 

    Nonlinear interstory drift contours for idealized forward directivity pulses using "modified fish-bone" models

    , Article Advances in Structural Engineering ; Volume 18, Issue 5 , May , 2015 , Pages 603-627 ; 13694332 (ISSN) Khalo, A. R ; Khosravi, H ; Jamnani, H. H ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    Four 5-, 10-, 20- and 30-story moment frames, representing low-, mid-, and two high-rise structures, were subjected to a great number of idealized directivity pulses. The amplitudes and periods of pulses vary from 0.02 g to 1.0 g and 0.5 to 12 sec, respectively. Over 1400 nonlinear dynamic analyses of low- to high-rise moment frames were performed which were feasible through using modified fish-bone model. The distribution of interstory drift along the height was studied and two applied contours were proposed: (i) the maximum interstory drift contour, and (ii) the critical story contour. These contours were demonstrated versus the ratio of natural period of the structure to the pulse period... 

    Analysis of singularities of a 3DOF parallel manipulator based on a novel geometrical method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Pendar, H ; Sadeghian, H ; Roozbehani, H ; Zohoor, H ; Sharif University of Technology
    2006
    Abstract
    In this article singular points of a parallel manipulator are obtained based on a novel geometrical method. Here we introduce the constrained plain method (CPM) and some of its application in parallel mechanism. Given the definition of constraint plane (CP) and infinite constraint plane (ICP) the dependency conditions of constraints is achieved with the use of a new theorem based on the Ceva geometrical theorem. The direction of angular velocity of a body is achieved by having three ICPs with the use of another theorem. Finally, with the use of the above two novel theorems singularities of the 3UPF_PU mechanism are obtained. It should be emphasized that this method is completely geometrical,... 

    Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 35 , August , 2011 , Pages 17310-17313 ; 19327447 (ISSN) Omid, H ; Delavari H., H ; Madaah Hosseini, H. R ; Sharif University of Technology
    2011
    Abstract
    An analytical model is proposed to study the effect of particle size on melting enthalpy and entropy of metallic nanoparticles (NPs). The Mott's and Regel's equations for melting entropy in the combination of core average coordination number (CAC) and surface average coordination number (SAC) of freestanding NPs are considered. Clusters of icosahedral (IC), body centered cubic (BCC), and body centered tetragonal (BCT) structure without any vacancies and defects are modeled. Using the variable coordination number made this model to be in good agreement with experimental and molecular dynamic (MD) results of different crystal structures. The model predicts melting entropy and enthalpy of... 

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2010
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    A new lattic LP-based post filter for adaptive noise cancellers in mobile and vehicular applications

    , Article Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, 16 December 2008 through 19 December 2008, Sarajevo ; 2008 , Pages 407-412 ; 9781424435555 (ISBN) Khorram, S ; Sameti, H ; Veisi, H ; Abutalebi, H. R ; Sharif University of Technology
    2008
    Abstract
    Adaptive Noise Cancellation (ANC) is a well-known technique for background noise reduction in automobile and vehicular environments. The noise fields in automobile and other vehicle interior obey the diffuse noise field model closely. On the other hand, the ANC does not provide sufficient noise reduction in the diffuse noise fields. In this paper, a new multistage post-filter is designed for ANC as a solution to diffuse noise conditions. The designed post-filter is a single channel Linear Prediction (LP) based speech enhancement system. The LP is performed by an adaptive lattice filter and attempts to extract speech components by using intermediate ANC signals. The post-filter has no... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    2011
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters  

    Mechanically activated synthesis of single crystalline MgO nanostructures

    , Article Journal of Alloys and Compounds ; Volume 506, Issue 2 , September , 2010 , Pages 715-720 ; 09258388 (ISSN) Nusheh, M ; Yoozbashizadeh, H ; Askari, M ; Kobatake, H ; Fukuyama, H ; Sharif University of Technology
    2010
    Abstract
    One-dimensional (1D) MgO structures were successfully synthesized via carbothermic reduction of mechanically activated mixture of MgO and graphite. Mechanical activation of source materials before carbothermic reduction can substantially enhance the formation of MgO products at a temperature (1000 °C) relatively lower than that required in previous approaches (≥1200 °C). However, the morphology of MgO formed is dependent on the degree of mechanical activation and the condition of the subsequent carbothermic reduction. Two distinctive morphologies were found for MgO products synthesized using our method: single crystalline nanorods with rectangular cross-sections whose diameters range from 50... 

    Boundary control design for vibration suppression and attitude control of flexible satellites with multi-section appendages

    , Article Acta Astronautica ; Volume 173 , 2020 , Pages 22-30 Ataei, M. M ; Salarieh, H ; Nejat Pishkenari, H ; Jalili, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Attitude and vibration control of a general form of flexible satellites is addressed in this paper. Partial differential dynamic equations are derived considering new details such as multi sectioned solar panels and elastic connections between main hub and solar panels. Boundary control approach is adopted to eliminate simplification errors of discrete models, using just one actuator in the hub. Asymptotic stability of attitude dynamics is proved for a group of boundary controllers and necessary conditions for asymptotic stability of vibrations are discussed. Being independent of modeling accuracy and using easily measurable feedbacks are among advantages of the proposed class of... 

    Characterization and calcination behavior of a low-grade manganese ore

    , Article Materials Today Communications ; Volume 25 , 2020 Cheraghi, A ; Becker, H ; Eftekhari, H ; Yoozbashizadeh, H ; Safarian, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Characterization and calcination behavior of a low-grade manganese ore, as a part of Mn ferroalloys production, was studied by XRF, ex-situ XRD, in-situ XRD, and SEM-EDS techniques. Calcination experiments were carried out at and up to 900 °C (1173 K) in air and argon atmospheres. The samples were in particles and powder forms. The results indicated that both quartz and calcite phases in the ore exhibit a bimodal spatial distribution; as relatively large regions and finely distributed in the Mn- and Fe-containing phases. By Rietveld analysis of the in-situ XRD data, the reactions occurring upon heating during the calcination process were deduced. Thermal decomposition and reactive diffusion... 

    Minimizing the error of time difference of arrival method in mobile networks

    , Article 2005 International Conference on Wirelessand Optical Communications Networks, Dubai, 6 March 2005 through 8 March 2005 ; 2005 , Pages 328-332 ; 0780390199 (ISBN); 9780780390195 (ISBN) Malekitabar, A ; Aghababa, H ; Radfar, M. H ; Khalaj, B. H ; Sharif University of Technology
    2005
    Abstract
    Estimating the position of a mobile set is of great importance in new mobile services. However, in most cases, the accuracy should be less than 100 meters. This accuracy is hard to reach especially in urban areas. The main problem is that there are a lot of obstacles like buildings between the BTS and the mobile set. Thus the time measured between BTS and the mobile set is somehow greater than the time it takes the wave to travel directly between two points. This paper introduces an optimized solution for TDOA as one of the most efficient ways for finding the location of a mobile phone. Considering the standards and limitations of both GSM and UMTS, the Authors present a solution for...