Loading...
Search for: shamloofard--mansoor
0.143 seconds

    Development of an inverse isogeometric methodology and its application in sheet metal forming process

    , Article Applied Mathematical Modelling ; Volume 73 , 2019 , Pages 266-284 ; 0307904X (ISSN) Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    This paper proposes an inverse isogeometric analysis to estimate the blank and predict the strain distribution in sheet metal forming processes. In this study, the same NURBS basis functions are used for drawing a final part and analysis of the forming process. In other words, this approach requires only one modeling and analysis representation, in contrast to inverse FEM. This model deals with minimization of potential energy, deformation theory of plasticity, and infinitesimal deformation relations with considering a new non-uniform friction model. One advantage of the presented methodology is that the governing equations are solved in two-dimensional space without concerning about... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Simulation of sheet metal forming processes by presenting a bending-dependent inverse isogeometric methodology

    , Article International Journal of Advanced Manufacturing Technology ; Volume 112, Issue 5-6 , 2021 , Pages 1389-1408 ; 02683768 (ISSN) Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Recently, eliminating the gap between design and formability analysis of sheet metal parts has been studied to simulate sheet metal stamping processes. In this regard, a transfer-based inverse isogeometric formulation has been proposed. This method has various advantages such as solving the governing equations in two-dimensional networks without any concern about the convergence; however, it neglects the bending effect which is a major contributor in die/punch profile radii. The present work aims to consider the bending effects by introducing a bending-dependent inverse isogeometric formulation. The developed model deals with the minimization of potential energy, deformation theory of... 

    Morphology modulation and phase transformation of manganese-cobalt carbonate hydroxide caused by fluoride doping and its effect on boosting the overall water electrolysis

    , Article Inorganic Chemistry ; Volume 62, Issue 3 , 2023 , Pages 1178-1191 ; 00201669 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2023
    Abstract
    Increasing demands for pollution-free energy resources have stimulated intense research on the design and fabrication of highly efficient, inexpensive, and stable non-noble earth-abundant metal catalysts with remarkable catalytic activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Morphology control of the catalysts is widely implemented as an effective strategy to change the surface atomic coordination and increase the catalytic behavior of the catalysts. In this study, we have designed a series of Mn-Co catalyts with different morphologies on the graphite paper substrate to enhance OER and HER activities in alkaline media. The prepared catalysts with... 

    Electrochemical Sensors Based on Electrodes Modified with Composites of Carbon Nanostructures and Polypyrrole; Application to Electrochemical Investigations and Determination of Nifedipine and Tizanidine

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, the electropolymerization of pyrrole was performed in the presence of Titan Yellow (TY) as a dopant anion on the surface of the electrode precoated with CNTs. The modified electrode was used to study the voltammetric response of tizanidine (TIZ). A remarkable increase was observed in the anodic peak current of TIZ on the surface of the modified electrode relative to the bare GCE. The surface morphology PPY/CNT/GCE was thoroughly characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. Under the optimized analysis conditions, the modified electrode showed two linear dynamic ranges of 0.01 - 1 μM and 1-10 μM with a detection limit of 3 nM... 

    Investigation of Electrocatalytic Behavior of Some Transition Metal Oxides, Sulfides and Phosphides Nanostructures Toward Electrochemical Water Splitting

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Energy and the environment issues are among the most important concerns of the present age. Global demand for energy is growing rapidly and energy demand is projected to double in the coming years. However, today most of the energy consumption comes from fossil fuels, which have limited and unstable reserves and are among the sources of environmental pollution. Hence, the production and conversion of clean energy from renewable sources is considered as an intelligent solution to significantly reduce dependence on fossil fuels and protect the environment. Fuel cells, metal-air batteries, and water electrolysis are among the simplest, most efficient, and most reliable technologies among... 

    Development of thermo-elastic tapered and spherical superelements

    , Article Applied Mathematics and Computation ; Volume 265 , 2015 , Pages 380-399 ; 00963003 (ISSN) Shamloofard, M ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Special superelements are often used to improve the computational efficiency and improve accuracy of finite element modeling. Structures with tapered and spherical geometry exist in many engineering problems. In this work, special tapered and spherical superelements are presented that can be used for modeling of tapered and spherical bodies in thermo mechanical analyses with computational efficiency. The performance of these superelements under thermal and structural loads is demonstrated by presenting several examples and comparing the results with those from conventional 3D brick elements, which shows high accuracy at reduced computational cost  

    Thermo-elastic Development of Cylindrical and Spherical Superelements and Introduce a New Gigh Speed Angular Contact Bearing Superelement Model

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Mansoor (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Angular contact bearings are utilized in many industrial types of machinery, including machine tools’ spindle. Spindle is one of the most important parts of a machine tool, which has a substantial impact on dynamic properties and stability of machining processes. Spindles’ motion takes place under guidance of bearings, which are mainly angular contact type. Since bearings’ loading under forces that are resulted from angular velocity and temperature increment are intensified, it is required to control the applied forces in operating situation, in order to predict the hardness, accuracy, efficiency, and life time of spindle. Thus, determining the dynamic performance of machine tool’s spindle,... 

    Development of Inverse Isogeometric Formulations in Simulation of Sheet Metal Forming Processes

    , Ph.D. Dissertation Sharif University of Technology Shamloofard, Mansoor (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    This research presents inverse isogeometric models based on the deformation theory of plasticity to predict the blank and strain distribution in sheet metal forming processes. In this study, the NURBS functions are utilized for both modeling of a final part and analysis of the forming process. Therefore, the developed models require only one modeling and analysis representation, in contrast to finite element models which deal with two separate modeling and analysis representations. In this research, a membrane one-step inverse isogeometric model is initially presented to analyze sheet metal forming processes. This method has various advantages such as solving the governing equations in... 

    Human Facial Activity Recognition using RGBD Videos

    , M.Sc. Thesis Sharif University of Technology Ghanbarpour Jooybari, Mohsen (Author) ; Jamzad, Mansoor (Supervisor)
    Abstract
    Human facial activity recognition is one of the endeavors to improve human-computer interaction. Recognition of excitements and emotions on human face by machine and makinga corresponding reaction is essential for man machine intraction.The purpose of this project is recognizingactivities such as speaking, eating, laughing, agree and disagree which have more complexity than usualemotions such as fear and happinesscontained in common datasets.So, adataset in accordance with the above mentioned 5 activities was collected and the appropriate feature vector for analyzing these face activities were implemented.Distance between the interest points located on the face were used as parameters in... 

    Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells

    , Article Engineering with Computers ; 2020 Shamloofard, M ; Hosseinzadeh, A ; Movahhedy, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3551-3567 ; 01770667 (ISSN) Shamloofard, M ; Hosseinzadeh, A ; Movahhedy, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the... 

    Feasibility Study of Capillary Blood Viscosity Estimation using MRI

    , M.Sc. Thesis Sharif University of Technology Rafiei, Alireza (Author) ; Samadfam, Mohammad (Supervisor) ; Ashoor, Mansoor (Co-Advisor)
    Abstract
    Magnetic resonance imaging is one of non-invasive methods to measure the hemodynamic and morphologic parameters of tissues, especially brain tissues. Hemodynamic parameters monitoring in brain tissue is of significant importance in many majors such as detection of tumor occurrence, brain abnormalities, and track of treatment procedures. Blood is a suspension, comprised of plasma, red blood cells, white blood cells, platelet, etc. Plasma is a Newtonian fluid which is composed of proteins and has a constant viscosity in body temperature. Rheological properties of blood are highly dependent on mechanical and rheological properties of its cells and this dependence is multiplied in narrow vessels... 

    Using genetic algorithm to identify soft-error derating blocks of an application program

    , Article Proceedings - 15th Euromicro Conference on Digital System Design, DSD 2012, 5 September 2012 through 8 September 2012 ; September , 2012 , Pages 359-367 ; 9780769547985 (ISBN) Arasteh, B ; Rahmani, A. M ; Mansoor, A ; Miremadi, S. G ; Sharif University of Technology
    2012
    Abstract
    Soft-errors are increasingly considered as a major cause for computer system failures. Software techniques are used as cost-effective and flexible techniques to tolerate soft-errors but the introduced overhead is not acceptable in some safety-critical real-time systems. The identification of the program blocks and protecting only vulnerable blocks against soft-errors reduces the performance overhead. In this paper, we present a genetic algorithm to identify the vulnerable program blocks as well as the derating program blocks against soft-errors. Then, only vulnerable blocks are protected by some software-based soft-error tolerance techniques to achieve a lower performance and space overhead.... 

    High Speed Digital Receiver, Design and Implementation

    , M.Sc. Thesis Sharif University of Technology Aarabi, Masoud (Author) ; Sanaei, Esmaeel (Supervisor) ; Pezeshk, Amir Mansoor (Supervisor)
    Abstract
    Nowadays, increasingly improvements in the digital technology and the advantages of using digital signal processing methods lead engineers to use digital signal processing instead of analog processing in variant domains. However, speed limitations in analog to digital converters (ADCs) and data transfer ports prevent its penetration to high frequency signals region. In this thesis, an Instantaneous Frequency Measurement (IFM) system that can measure frequency in the range of 2-18 GHz is implemented fully digital (DIFM) on FPGA. To do so, monobit sampling technique with the sampling rate of 10 GHz is selected, and GTX high speed serial port is configured to transfer digital data into FPGA.... 

    Optimum design of middle stage tool geometry and addendum surfaces in sheet metal stamping processes using a new isogeometric-based framework

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; 2021 ; 09544054 (ISSN) Shamloofard, M ; Isazadeh, A. R ; Bostan Shirin, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    An efficient isogeometric-based framework is presented to integrate optimum design and formability analysis of sheet metal forming processes. To assess the quality of the formed parts, several objective functions such as fracture, wrinkling, thickness variation, and stretching are studied. In this framework, geometric parameters of addendum surfaces and middle tools are considered as design variables, the objective functions are calculated using the recently developed one-step and multi-step inverse isogeometric methods, and the optimum design variables are obtained using the genetic global optimization algorithm. The major advantage of employing the inverse methods is to analyze the... 

    Optimum design of middle stage tool geometry and addendum surfaces in sheet metal stamping processes using a new isogeometric-based framework

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 236, Issue 6-7 , 2022 , Pages 741-757 ; 09544054 (ISSN) Shamloofard, M ; Isazadeh, A. R ; Shirin, M. B ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    An efficient isogeometric-based framework is presented to integrate optimum design and formability analysis of sheet metal forming processes. To assess the quality of the formed parts, several objective functions such as fracture, wrinkling, thickness variation, and stretching are studied. In this framework, geometric parameters of addendum surfaces and middle tools are considered as design variables, the objective functions are calculated using the recently developed one-step and multi-step inverse isogeometric methods, and the optimum design variables are obtained using the genetic global optimization algorithm. The major advantage of employing the inverse methods is to analyze the... 

    The effect of a two steps searching mechanism Using Feature Vectors Related to Image Class in Improving the Performance of CBIR System

    , M.Sc. Thesis Sharif University of Technology Sherafati, Shima (Author) ; Jamzad, Mansoor (Supervisor) ; Manzuri Shalmani, Mohammad Taghi (Co-Advisor)
    Abstract
    Nowadays, retrieval is an inseparable part of user activities and due to growing usage of Content-Based Image Retrieval (CBIR), it has become a hot and challenging research topic specially in the past decade. The most important challenge that retrieval systems (including CBIR systems) are facing is the semantic gap between abstractions in the user’s mind and what is searched. One of the ways of dealing with this challenge is getting more information from the user about what he needs and so decreasing the distance between user’s will and what he gives to search engine as the description of his need. In this research, the class of query image is supposed to be given. For using this...