Loading...
Search for: shamloofard--maryam
0.129 seconds

    Electrochemical Sensors Based on Electrodes Modified with Composites of Carbon Nanostructures and Polypyrrole; Application to Electrochemical Investigations and Determination of Nifedipine and Tizanidine

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, the electropolymerization of pyrrole was performed in the presence of Titan Yellow (TY) as a dopant anion on the surface of the electrode precoated with CNTs. The modified electrode was used to study the voltammetric response of tizanidine (TIZ). A remarkable increase was observed in the anodic peak current of TIZ on the surface of the modified electrode relative to the bare GCE. The surface morphology PPY/CNT/GCE was thoroughly characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. Under the optimized analysis conditions, the modified electrode showed two linear dynamic ranges of 0.01 - 1 μM and 1-10 μM with a detection limit of 3 nM... 

    Development of an inverse isogeometric methodology and its application in sheet metal forming process

    , Article Applied Mathematical Modelling ; Volume 73 , 2019 , Pages 266-284 ; 0307904X (ISSN) Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    This paper proposes an inverse isogeometric analysis to estimate the blank and predict the strain distribution in sheet metal forming processes. In this study, the same NURBS basis functions are used for drawing a final part and analysis of the forming process. In other words, this approach requires only one modeling and analysis representation, in contrast to inverse FEM. This model deals with minimization of potential energy, deformation theory of plasticity, and infinitesimal deformation relations with considering a new non-uniform friction model. One advantage of the presented methodology is that the governing equations are solved in two-dimensional space without concerning about... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Simulation of sheet metal forming processes by presenting a bending-dependent inverse isogeometric methodology

    , Article International Journal of Advanced Manufacturing Technology ; Volume 112, Issue 5-6 , 2021 , Pages 1389-1408 ; 02683768 (ISSN) Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Recently, eliminating the gap between design and formability analysis of sheet metal parts has been studied to simulate sheet metal stamping processes. In this regard, a transfer-based inverse isogeometric formulation has been proposed. This method has various advantages such as solving the governing equations in two-dimensional networks without any concern about the convergence; however, it neglects the bending effect which is a major contributor in die/punch profile radii. The present work aims to consider the bending effects by introducing a bending-dependent inverse isogeometric formulation. The developed model deals with the minimization of potential energy, deformation theory of... 

    Development of thermo-elastic tapered and spherical superelements

    , Article Applied Mathematics and Computation ; Volume 265 , 2015 , Pages 380-399 ; 00963003 (ISSN) Shamloofard, M ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Special superelements are often used to improve the computational efficiency and improve accuracy of finite element modeling. Structures with tapered and spherical geometry exist in many engineering problems. In this work, special tapered and spherical superelements are presented that can be used for modeling of tapered and spherical bodies in thermo mechanical analyses with computational efficiency. The performance of these superelements under thermal and structural loads is demonstrated by presenting several examples and comparing the results with those from conventional 3D brick elements, which shows high accuracy at reduced computational cost  

    Thermo-elastic Development of Cylindrical and Spherical Superelements and Introduce a New Gigh Speed Angular Contact Bearing Superelement Model

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Mansoor (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Angular contact bearings are utilized in many industrial types of machinery, including machine tools’ spindle. Spindle is one of the most important parts of a machine tool, which has a substantial impact on dynamic properties and stability of machining processes. Spindles’ motion takes place under guidance of bearings, which are mainly angular contact type. Since bearings’ loading under forces that are resulted from angular velocity and temperature increment are intensified, it is required to control the applied forces in operating situation, in order to predict the hardness, accuracy, efficiency, and life time of spindle. Thus, determining the dynamic performance of machine tool’s spindle,... 

    Development of Inverse Isogeometric Formulations in Simulation of Sheet Metal Forming Processes

    , Ph.D. Dissertation Sharif University of Technology Shamloofard, Mansoor (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    This research presents inverse isogeometric models based on the deformation theory of plasticity to predict the blank and strain distribution in sheet metal forming processes. In this study, the NURBS functions are utilized for both modeling of a final part and analysis of the forming process. Therefore, the developed models require only one modeling and analysis representation, in contrast to finite element models which deal with two separate modeling and analysis representations. In this research, a membrane one-step inverse isogeometric model is initially presented to analyze sheet metal forming processes. This method has various advantages such as solving the governing equations in... 

    3d Design of a Microfluidic Chip for Anticancer Drugs Screening

    , M.Sc. Thesis Sharif University of Technology Hashemi, Maryam Sadat (Author) ; Mashayekhan, Shohreh (Supervisor) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Nowadays, advanced and inexpensive pre-clinical methods for investigating the effects of anti-cancer drugs are expanding. One of the latest three-dimensional laboratory modeling for evaluating the effects of drugs is the use of tumor-on-chip technology, which actually models the physiological system of the body through three-dimensional scaffolds, multicellular cultures, and shaped vascular systems. In this study, three-dimensional culture of cancer cells was performed in the form of spheroids. A chip of U-shaped microstructures with and without gaps was used to trap cells and form cancer spheroids. We simulated the simultaneous effect of drug and oxygen concentration distribution inside the... 

    Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells

    , Article Engineering with Computers ; 2020 Shamloofard, M ; Hosseinzadeh, A ; Movahhedy, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the... 

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3551-3567 ; 01770667 (ISSN) Shamloofard, M ; Hosseinzadeh, A ; Movahhedy, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the... 

    Model Checking of Stochastic Activity Networks

    , M.Sc. Thesis Sharif University of Technology Maryam Bagheri (Author) ; Movaghar, Ali (Supervisor)
    Abstract
    Modeling and performance evaluation of the real time distributed systems is a significant problem. Stochastic activity network is one of the high level models used for this purpose. This network is an extension of generalized stochastic Petri net which is more powerful and flexible than other Petri net extensions. Checking the satisfiability of properties such as performance, dependability and user's expected properties is considerable in these models. Thus, using the approaches and generating modeling and model checking tools with the mentioned purpose is attractive. A model checker automatically checks the correctness of the system behaviors as properties against the model by getting the... 

    Fabrication of Thick Scaffold with Microfluidic Channels by Bioprinter

    , M.Sc. Thesis Sharif University of Technology Khalighi, Sadaf (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular diseases are among the leading causes of death worldwide. For instance, in 2015, almost 31% of the world’s mortality rate was due to these causes. One of these diseases is cardiac coronary vessels’ occlusion which leads to the insufficient blood supply to the heart tissue and cardiomyocytes death after Myocardial Infarction (MI). After MI, a hierarchy of events in the heart tissue changes heart muscle and forms cardiac fibrosis. This fibrotic tissue does not have the native one’s properties and function, so it will cause cardiac arrest and patient death. Therefore, it is obvious that vascular network plays a crucial role in the heart function. The importance of cardiac... 

    Robust Estimation and Control of a Planet Lander

    , M.Sc. Thesis Sharif University of Technology Ahmadvand, Reza (Author) ; Kiani, Maryam (Supervisor)
    Abstract
    This study has focused on the important problem of landing on a planet as an important current and future space mission. In this regard, dynamics modeling and integrated state estimation and control problems have been investigated in different views. To this aim, first a novel concurrent representation for translational and rotational kinematics has been developed based on the extension of modified Rodrigues parameters to dual space. This parameter set, called dual modified Rodrigues parameters (DMRP), is then utilized to establish an integrated roto-translational dynamic. The proposed DMRP-based kinematics and dynamics have been verified via comparison to traditional methods of... 

    Optimal Control of Unknown Interconnected Systems via Distributed Learning

    , M.Sc. Thesis Sharif University of Technology Farjadnasab, Milad (Author) ; Babazadeh, Maryam (Supervisor)
    Abstract
    This thesis addresses the problem of optimal distributed control of unknown interconnected systems. In order to deal with this problem, a data-driven learning framework for finding the optimal centralized and the suboptimal distributed controllers has been developed via convex optimization.First of all, the linear quadratic regulation (LQR) problem is formulated into a nonconvex optimization problem. Using Lagrangian duality theories, a semidefinite program is then developed that requires information about the system dynamics. It is shown that the optimal solution to this problem is independent of the initial conditions and represents the Q-function, an important concept in reinforcement... 

    Utilizing Gaussian Processes to Learn Dynamics of Unknown Torques Acting on a Spacecraft

    , M.Sc. Thesis Sharif University of Technology Baradaran, Behdad (Author) ; Kiani, Maryam (Supervisor)
    Abstract
    Accurate and fast attitude estimation of a rigid body plays an essential role in the performance of a vehicle’s control system, especially aerospace vehicles. Ample works have been done to increase the accuracy and speed of the attitude estimation process, but all have been developed according to a model-based approach. This approach assumes that the torques acting on the body have a known dynamical model that is used for the attitude estimation. The purpose of the present research is to estimate the attitude via a model-free approach, i. e. dynamics of the torques acting on the body are no longer assumed to be known, and its learning is the next step. Thus, the problem formulation of this... 

    Stabilization and Pole-Placement by Structurally-Constrained Controllers: A Graph-Theoretic Approach

    , M.Sc. Thesis Sharif University of Technology Moushaee, Pegah (Author) ; Babazadeh, Maryam (Supervisor)
    Abstract
    This thesis presents a new approach to design structural output feedback controllers with stabilization and pole-placement at desired points on the S plane. It is assumed that the linear time-invariant system has no fixed mode corresponding to the specified control structure, outside the desired region of the closed-loop poles, such that the structural controller design problem is theoretically feasible. To this end, the structural output controller design problem is first transformed into a structurally equivalent problem based on the solution of a set of discrete linear programs. Then, by using the resultant structure, a new method is proposed for designing static and dynamic control loops... 

    Fabrication the Hydrogel Microfibers Using Bioprinter with Application in Cardiovascular Model

    , M.Sc. Thesis Sharif University of Technology Heidari, Faranak (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular disease (CVD) currently remains a considerable challenge for clinical treatments. CVDs account for N17.5 million deaths per year and will predictably increase to 23.6 million by 2030. The main purpose is to create human model systems to study the effect of disease mutations or drug treatment on the heart. In addition, engineered cardiac tissues are considered promising candidates to be transplanted to improve the function of diseased hearts. For engineered active tissues/organs, 3D bioprinting can fabricate complex tissue architecture with a spatiotemporal distribution of bioactive substances (cells, growth factors, and others) to better guide tissue regeneration. However,... 

    Design of Microfluidic Chip for 3D Cell Culture

    , M.Sc. Thesis Sharif University of Technology Ghobadi, Faezeh (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Understanding biological systems requires extensive knowledge of individual parameters, and to study the processes of cell differentiation and cell behavior, a suitable environment must be created with the physiological conditions of the human body. For this purpose, with the knowledge of microfluidics, a microenvironment can be provided to study the behavior of cells on a small scale. The use of bone tissue model microfluidic chips is an alternative and new method in which it is possible to study the behavior of cells to differentiate into bone and to examine the toxicity of drugs, which in itself can help in the effective and successful treatment of these cases show. Therefore, in this... 

    Optimal Energy Trading in a Smart Grid Based on Extremum-seeking Algorithm

    , M.Sc. Thesis Sharif University of Technology Asgari, Houman (Author) ; Babazadeh, Maryam (Supervisor)
    Abstract
    Prevalent deployment of Distributed Energy Resources(DERs) in the demand side of electrical energy grids has several advantages such as greenhouse gases emission reduction, mitigation of power losses in the distribution grids and abatement of the dependency on the wholesale generation companies. At the same time, it paves the way for the advent of local interactive energy trading frameworks. In the following thesis, a distributed data-driven algorithm is developed for market-clearing in a community-based local energy market. The social welfare maximization is considered as the objective of the energy trading. The production and demand of electricity are the decision variables of sellers and...