Loading...
Search for: shojaei--a
0.139 seconds

    A theoretical analysis on resin injection/compression molding

    , Article Key Engineering Materials ; Volume 334-335 I , 2007 , Pages 209-212 ; 10139826 (ISSN) Shojaei, A ; Spah, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2007
    Abstract
    In the present investigation, mold filling process of resin injection/compression molding (RI/CM) is compared with resin transfer molding (RTM) for simple mold geometry. To do this, analytical solutions are obtained for RI/CM in unidirectional flow. Based on the analytical solutions, flow front progression and pressure distribution are compared with RTM at different fiber content. The results indicate that the RI/CM reduces the mold filling time significantly, particularly for composite parts with higher fiber content  

    Amino functionalized hierarchically produced porous polyacrylamide microspheres for the removal of chromium(VI) from aqueous solution

    , Article Journal of Porous Materials ; Volume 24, Issue 6 , 2017 , Pages 1705-1715 ; 13802224 (ISSN) Karimi, M ; Nematollahzadeh, A ; Shojaei, A ; Sharif University of Technology
    2017
    Abstract
    Porous silica microspheres were used as hard template to produce porous polyacrylamide microspheres. The microspheres were modified with ethylenediamine and used for the removal of hexavalent chromium [Cr(VI)] from aqueous solution. Scanning electron microscopy, thermogravimetry analysis, and Fourier transform infrared spectroscopy were utilized to characterize the adsorbent. Adsorption of Cr(VI) was conducted in batch and dynamic modes, and effect of various parameters including solution pH, adsorbent dose, initial concentration of Cr(VI) and agitation time on the adsorption process was studied. The optimum pH for the maximum adsorption (124 mg Cr(VI)/g dry polymer) was found to be 3.... 

    Experimental study on the influence of initial pH, ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; Volume 64, Issue 4 , 2019 , Pages 1508-1514 ; 00219568 (ISSN) ; https://pubs.acs.org/doi/abs/10.1021/acs.jced.8b01091 Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    Experimental study on the influence of initial pH, Ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; 2019 ; 00219568 (ISSN) Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    Experimental study on the influence of initial pH, ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; 2019 ; 00219568 (ISSN) Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    A flat polymeric membrane sensor for carbon dioxide/nitrogen gas mixture

    , Article Chemical Engineering Communications ; Volume 204, Issue 4 , 2017 , Pages 445-452 ; 00986445 (ISSN) Shabani, E ; Mousavi, S. A ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    A gas sensor was developed to measure the concentration of binary gas mixtures. This sensor works based on the permeability change of different gas mixtures across the polymeric membranes. Although high values of permeability and selectivity are needed for an ideal separation, the performance of this sensor mainly depends on the permeability factor. Polysulfone and silicone rubber were applied as the membrane base and coat, respectively. Moreover, in contrast to existing polymeric sensors that use hollow fibers, the present sensor is made of flat membranes. This new design is cheaper, smaller, and easier to use in comparison to the hollow fiber polymeric sensors. In order to test the sensor... 

    Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr)

    , Article Microporous and Mesoporous Materials ; Volume 257 , February , 2018 , Pages 193-201 ; 13871811 (ISSN) Molavi, H ; Eskandari, A ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A metal organic framework (MOF) modified with amino group (NH2-UiO-66) was functionalized with glycidyl methacrylate (GMA) via ring opening reaction between the amine species in the framework and epoxy groups in GMA. The products were characterized by X-ray powder diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and N2 adsorption–desorption measurements to monitor their textural properties before and after functionalization. The BET surface area, pore volume, and pore... 

    Nanodiamond-filled chitosan as an efficient adsorbent for anionic dye removal from aqueous solutions

    , Article Journal of Environmental Chemical Engineering ; Volume 6, Issue 2 , 2018 , Pages 3283-3294 ; 22133437 (ISSN) Raeiszadeh, M ; Hakimian, A ; Shojaei, A ; Molavi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A series of novel chitosan/nanodiamond (CTS/ND) composites containing NDs with variable surface carboxyl groups and various concentrations were prepared using solution casting method. Powdery CTS/ND composites were employed as the adsorbent of a model anionic dye (methyl orange, MO). Experimental results showed that the incorporation of NDs with high carboxylic content (ND-H) in to CTS increased substantially the maximum adsorption capacity of neat CTS from 167 mg/g to 454 mg/g. The remarkable adsorption capacity of dye on CTS/ND composites was associated to the oxygen-containing groups on the outer surface of NDs which would be beneficial to interact with the dye molecules through hydrogen... 

    Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media

    , Article Applied Surface Science ; Volume 445 , 2018 , Pages 424-436 ; 01694332 (ISSN) Molavi, H ; Hakimian, A ; Shojaei, A ; Raeiszadeh, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A highly water stable metal-organic framework (MOF) based on zirconium, i.e. UiO-66, was synthesized and then employed to adsorptive removal of an anionic dye, methyl orange (MO), and a cationic dye, methylene blue (MB), from aqueous solution. In this work, for the first time, the long term stability of UiO-66 in water was investigated for 12 months. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and N2 adsorption/desorption analysis were employed to monitor the textural alteration of UiO-66 during water aging. The results indicated that the structure of UiO-66 was mostly retained and its adsorption capacity toward dyes exhibited minor loss after long term water... 

    Adsorption behavior of a Gd-Based metal-organic framework toward the quercetin drug: effect of the activation condition

    , Article ACS Omega ; Volume 7, Issue 45 , 2022 , Pages 41177-41188 ; 24701343 (ISSN) Tajahmadi, S ; Shamloo, A ; Shojaei, A ; Sharifzadeh, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A carboxylate gadolinium-based metal-organic framework (Gd-MOF) is an exceptional candidate for magnetic resonance imaging agents, but its low drug adsorption capacity hinders this MOF from being used as a theragnostic agent. In this work, the Gd-MOF was synthesized by a simple solvothermal method. Then, different activation situations, including various solvents over different time periods, were applied to enhance the specific surface area of the synthesized MOF. Different characterization analyses such as X-ray diffraction and Brunauer-Emmett-Teller along with experimental quercetin adsorption tests were done to study the crystalline and physical properties of various activated MOFs. In... 

    A mathematical method for XRD pattern interpretation in clay containing nano composites

    , Article Applied Surface Science ; Volume 318 , 1 November , 2014 , Pages 90-94 ; ISSN: 01694332 Khederlou, K ; Bagheri, R ; Shojaei, A ; Sharif University of Technology
    2014
    Abstract
    X-ray diffraction and rheological measurements were used to characterize nanoparticle dispersion in LDPE/LLDPE/nanoclay hybrid nanocomposites. XRD patterns were interpreted with a novel distribution formula and rheological measurements were used to confirm the results. Results of these two methods indicated that increasing clay in all the prepared nanocomposites exhibited a significant improvement in filler-matrix interaction because of increasing the probability of polymer diffusion but further exfoliation need more compatibilizing situations. It seems that this mathematical method could be used for predicting the overall change in clay gallery d-spacing and the extent of... 

    Studies on the friction and wear characteristics of rubber-based friction materials containing carbon and cellulose fibers

    , Article Journal of Materials Science ; Volume 46, Issue 6 , 2011 , Pages 1890-1901 ; 00222461 (ISSN) Shojaei, A ; Arjmand, M ; Saffar, A ; Sharif University of Technology
    2011
    Abstract
    The present study was an attempt to examine the effects of carbon and cellulose fibers on the tribological characteristics of rubber-based friction materials (RBFMs). A fiber free RBFM as a reference material and a series of fiber included RBFMs at different volume fractions were prepared by two-roll mill. The friction tests were per-formed at different sliding velocities and various drum temperatures. The mechanical properties and surface microstructure of friction specimens were also examined. It was revealed that the carbon fiber infiuences slightly the coefficient of friction (COF) of RBFM but it improves the wear resistance and the fade behavior considerably. It reduces the drum... 

    Effect of organoclay loading and electron beam irradiation on the physico-mechanical properties of low-density polyethylene/ethylene-vinyl acetate blend

    , Article Polymers for Advanced Technologies ; Volume 22, Issue 12 , 2011 , Pages 2352-2359 ; 10427147 (ISSN) Shojaei, A ; Behradfar, A ; Sheikh, N ; Sharif University of Technology
    2011
    Abstract
    The influence of electron beam (EB) irradiation and organoclay (OC) loading on the properties of low-density polyethylene (LDPE)/ethylene-vinyl acetate (EVA) blends was investigated. The samples were subjected to the EB irradiation with the dose values of 50 and 250kGy. X-ray diffraction (XRD), gel content, mechanical, thermal, and electrical properties were utilized to analyze the characteristics of the LDPE/EVA blends with and without OC at different irradiation dosages. Gel content analysis showed that the OC promotes considerably the insoluble part so that the LDPE/EVA blends filled with OC become fully crosslinked at 250kGy; possibly through the formation of further crosslinks between... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Wear and thermal effects in low modulus polymer-based composite friction materials

    , Article Journal of Applied Polymer Science ; Volume 95, Issue 5 , 2005 , Pages 1181-1188 ; 00218995 (ISSN) Haddadi, E ; Abbasi, F ; Shojaei, A ; Sharif University of Technology
    2005
    Abstract
    The wear properties of low modulus polymer-based friction materials were studied. The wear equation W = K Pa Vb tc was used to correlate the wear of polymer-based friction material sliding against cast iron with the wear coefficient (K), load (P), speed (V), and time (f). The parameters were determined experimentally by varying only one variable at a time and keeping the other two variables constant. The wear rate of selected polymer-based friction material was compared with cast iron friction material. © 2005 Wiley Periodicals, Inc  

    A risk-Adjusted multi-Attribute cumulative sum control scheme in health-care systems

    , Article IEEE International Conference on Industrial Engineering and Engineering Management ; 2014 , pp: 1102-1106 ; ISSN: 21573611 Shojaei, S. N ; Niaki, S. T. A ; Sharif University of Technology
    2014
    Abstract
    Hospitals increasingly use control charts to monitor clinical processes and their outcomes. In medical context, control charts should have stable performance when different patients with different levels of risk enter the hospital. In order to monitor multi-Attribute medical processes, we propose a new control chart with entities having different levels of risk. First, risk-Adjusted multivariate cumulative sum control chart (RA-MCUSUM) is developed. Then, simulation experiences are performed to demonstrate the application and to evaluate its performance in terms of in-control average run length (ARL0) stability with the one of a standard MCUSUM chart. The results show that while the standard... 

    Controlled growth of hollow polyaniline structures: From nanotubes to microspheres

    , Article Polymer (United Kingdom) ; Volume 54, Issue 21 , 2013 , Pages 5586-5594 ; 00323861 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Sharif University of Technology
    2013
    Abstract
    Homogeneous and fairly monosized microspherical structures of polyaniline has been synthesized using a simple soft template method with β-naphthalene sulfonic acid (β-NSA) as both the surfactant and dopant, and ammonium persulfate (APS) as the oxidant at 2-5 C. The morphology of PANI-NSA was successfully controlled from nanotubes to microsphere, by changing the synthesis conditions (i.e. pH, the concentration of surfactant and monomer, and temperature). Some mechanistic aspects of the formation of nanotubes and hollow spheres have been discussed precisely based on SEM, TEM, DLS, FTIR and UV-visible results. Moreover, synthesis was performed under acidic environment to obtain further... 

    Submicron nanoporous polyacrylamide beads with tunable size for verapamil imprinting

    , Article Journal of Applied Polymer Science ; Volume 125, Issue 1 , 2012 , Pages 189-199 ; 00218995 (ISSN) Nematollahzadeh, A ; Abdekhodaie, M. J ; Shojaei, A ; Sharif University of Technology
    2012
    Abstract
    Submicron sized polyacrylamide particles were prepared via modified precipitation polymerization method. Experimental design based on Taguchi approach was employed to study the influence of the polymerization composition including monomer (acrylamide), crosslinker (methylenebisacrylamide), initiator (azobisisobutyronitrile), and modifier (polyvinylpyrrolidone, K-30), on the size and morphology of the particles. Varying the polymerization composition, submicron-particles with sizes ranging between 100 and 600 nm were achieved. In all the cases, polydispersity index (PDI) of the particle size was found to be almost 1 indicating uniformity of the particle size. The concentration of crosslinker... 

    Morphology transition control of polyaniline from nanotubes to nanospheres in a soft template method

    , Article Polymer International ; Volume 64, Issue 1 , June , 2015 , Pages 88-95 ; 09598103 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    A soft template route is reported for the fabrication of polyaniline nanospheres via the oxidative polymerization of aniline in the presence of β-naphthalenesulfonic acid (β-NSA) as both surfactqant and dopant, and ammonium persulfate as oxidant at 2-5°C. Control over the morphology and size of the nanoparticles was achieved by changing the reaction medium via addition of an organic cosolvent (i.e. ethanol or ethylene glycol) and by controlling the concentrations of aniline and β-NSA and the molar ratio of β-NSA to aniline. By this means the size of the β-NSA-aniline micelles and the way that aniline monomer interacts with the micelles were controlled. In fact the lower dielectric constant... 

    Ethylenediamine grafting to functionalized NH2-UiO-66 using green aza-Michael addition reaction to improve CO2/CH4 adsorption selectivity

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 20 , April , 2018 , Pages 7030-7039 ; 08885885 (ISSN) Molavi, H ; Ahmadi Joukani, F ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Three versions of zirconium-based metal organic frameworks, NH2-UiO-66, GMA-UiO-66, and EDA-UiO-66, were synthesized and employed as adsorbent for CO2/CH4 separation. GMA-UiO-66 was synthesized via a ring opening reaction between the amine species in the framework and epoxy groups in glycidyl methacrylate (GMA), while the green aza-Michael addition reaction was used for the first time to functionalize GMA-UiO-66 with ethylenediamine (EDA). The products were characterized by BET, XRD, TGA, FESEM, ICP-OES, 1H NMR, mass spectroscopy, and FTIR-ATR methods to monitor their textural properties before and after functionalization. The results indicated that GMA was successfully grafted to the...