Loading...
Search for: shokrani--mohammad
0.14 seconds

    , M.Sc. Thesis Sharif University of Technology Shokrani, Mohammad (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In recent years, different of nanoparticles as oil additives has been investigated in many studies . These research show that nanoparticles are deposited on the surface friction and improve tribology properties of base oil and also significant reduction of wear and friction caused by the nanoparticles. Compared with metal and metal oxide nanoparticles , carbon nanotubes (CNT) due to the high thermal conductivity and high aspect ratio , is an excellent candidate as the nanoparticle is dispersed . For preparing useful oil it is essential to stabilize nanoparticles in fluid that will not settle over long time . Oils containing nanoparticles by increasing the heat transfer coefficient... 

    Optimization of Aeration & Dissolved Oxygen Concentration in Moving Bed Bio Reactors

    , M.Sc. Thesis Sharif University of Technology Shokrani Baighi, Mahdi (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    In this research the performance of the Moving Bed Biofilm Rector (MBBR) in different amounts of dissolved oxygen (DO) was investigated. Reactor with a useful volume of 15 liters was used in this study. In order to obtain optimum oxygen concentration, stayed at 6, 10 and 15 hours, and at different levels of dissolved oxygen in the range 0.5 -6 mg/lit, the amount of organic material was removed respectively. Also, in two different aeration intensity of 3.5 and 5.5 liters per minute at different values of e% (percentage of filling of media) the mass transfer coefficient values were obtained. When the aeration intensity increases from 3.5 to 5.5 liters per minute, and the percentage of 40%... 

    Methods for biomaterials printing: A short review and perspective

    , Article Methods ; Volume 206 , 2022 , Pages 1-7 ; 10462023 (ISSN) Shokrani, H ; Shokrani, A ; Saeb, M. R ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Printing technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials engineering by the conversion of a digital subject into a printed object (implants, scaffolds, or diagnostics and drug delivery devices/systems). Inspired by the lessons learned from 3D printing, the concept of 4D printing (better called shape-morphing... 

    Designing Polymeric Biomaterials based on Polysaccharides with Tissue Adhesion and Hemostasis Performance

    , M.Sc. Thesis Sharif University of Technology Shokrani, Hanieh (Author) ; Mashayekhan, Shohreh (Supervisor) ; Kordzadeh, Azadeh (Co-Supervisor)
    Abstract
    Death can be the result of severe bleeding which is associated with the loss of a high amount of blood like what happens in accidents, wars, or operations. Classic methods to stop bleeding are mostly ineffective to decrease the hemostasis time and the volume of the lost blood. A wide variety of products like powders, foams, and hydrogels have been designed and synthesized either from natural or synthetic polymers. However, limitations like weak tissue adhesion, creating a moist environment in the wound site, infection, weak biodegradation, and hemolysis still have remained. Among the existing options to be used as hemostasis agents, polysaccharides can be appropriate considering their great... 

    Monte Carlo Modeling of a Gamma Camera for Sm-153 Imaging in Targeted Radiotherapy and Benchmarking with Measured Data

    , M.Sc. Thesis Sharif University of Technology Asgari, Afrouz (Author) ; Sohrabpour, Mostafa (Supervisor) ; Shokrani, Parvaneh (Co-Advisor)
    Abstract
    Metastatic bone is one of the most common causes pain in cancer patients. Because of Sm-153 emits gamma and beta, Sm-153 have been used for both of the diagnosis and treatment of metastases; Also Tc-99m have been used for the detection of metastases. Dosimetric studies in targeted radiotherapy require an accurate quantification of activity existing in different organs of a patient, which can be estimated from scintigraphic images. Quantitative imaging is difficult to perform because of several physical phenomena, such as scatter and attenuation, which lead to errors in activity determination and nuclear medicine image degradation.
    In this work, we must determine the optimal... 

    A UHF micro-power CMOS rectifier using a novel diode connected CMOS transistor for micro-sensor and RFID applications

    , Article International Conference on Electronic Devices, Systems, and Applications ; 2012 , Pages 234-238 ; 21592047 (ISSN) ; 9781467321631 (ISBN) Shokrani, M. R ; Hamidon, M. N ; Khoddam, M ; Najafi, V ; Sharif University of Technology
    2012
    Abstract
    The design strategy and efficiency optimization of UHF micro-power rectifiers using a novel diode connected MOS transistor is presented. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduce the threshold voltage and leakage current in compare to conventional diode connected transistors. Using the proposed diode in typical rectifiers makes a significant improvement in output voltage and current therefore the efficiency is increased comparing to the same rectifier architectures using conventional diodes. Also a design procedure for efficiency optimization is presented and a superposition method is used to optimize the performance of multiple output... 

    Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine

    , Article Annals of Nuclear Medicine ; Volume 29, Issue 4 , 2015 , Pages 375-383 ; 09147187 (ISSN) Asgari, A ; Ashoor, M ; Sohrabpour, M ; Shokrani, P ; Rezaei, A ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Objective: Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. Methods: The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with... 

    Design, Manufacturing and Assessment of a Stiffness Measurement Tool From Clinical Aspect, for Diagnosing Anterior Cruciate Ligament During Arthroscopy

    , M.Sc. Thesis Sharif University of Technology Shokrani, Amir Hossein (Author) ; Saadat Foumani, Mahmoud (Supervisor) ; Narimani, Roya (Co-Advisor)
    Abstract
    Every year a significant number of people in the world suffer knee injuries due to sport activities and accidents. Ligament tearing accounts for majority of knee injury cases. Clinical tests for diagnosing ligament injuries, give us just qualitative results. Modern pieces of equipment quickly and precisely give us the status of ligaments. In this project, we attempt to design and manufacture a clinical equipment that could log ligament’s stiffness during the arthroscopy; such that this information could be screened throughout the test  

    Artificial intelligence for biomedical engineering of polysaccharides: a short overview

    , Article Current Opinion in Biomedical Engineering ; Volume 27 , 2023 ; 24684511 (ISSN) Shokrani, H ; Shokrani, A ; Seidi, F ; Kucinska Lipka, J ; Makurat Kasprolewicz, B ; Saeb, M. R ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    The advent of computer-aided concepts and cognitive algorithms, along with fuzzy sets and fuzzy logic thoughts, supported the idea of ‘making computers think like people’ (Lotfi A. Zadeh, IEEE Spectrum, 21 (26–32), 1984). Such a school of thought enabled the sophistication of mission-oriented development of biomaterials and biosystems with the aid of ‘Artificial Intelligence’ (AI). Since polysaccharides (PSA) are medically safe and rely on stimuli-responsiveness, we herein highlight the importance of using AI-based algorithms in PSA-based biomedical engineering. Since manufacturing PSA-based biomaterials by AI experiences a very early stage of maturity, pattern recognition and behavior... 

    Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction

    , Article Carbohydrate Polymers ; Volume 295 , 2022 ; 01448617 (ISSN) Shokrani, H ; Shokrani, A ; Seidi, F ; Munir, M. T ; Rabiee, N ; Fatahi, Y ; Kucinska Lipka, J ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Tissue adhesives have been widely used for preventing wound leaks, sever bleeding, as well as for enhancing drug delivery and biosensing. However, only a few among suggested platforms cover the circumstances required for high-adhesion strength and biocompatibility, without toxicity. Antibacterial properties, controllable degradation, encapsulation capacity, detectability by image-guided procedures and affordable price are also centered to on-demand tissue adhesives. Herein we overview the history of tissue adhesives, different types of polysaccharide-based tissue adhesives, their mechanism of gluing, and different applications of polysaccharide-based tissue adhesives. We also highlight the... 

    Polysaccharide-based biomaterials in a journey from 3D to 4D printing

    , Article Bioengineering and Translational Medicine ; Volume 8, Issue 4 , 2023 ; 23806761 (ISSN) Shokrani, H ; Shokrani, A ; Seidi, F ; Mashayekhi, M ; Kar, S ; Nedeljkovic, D ; Kuang, T ; Saeb, M. R ; Mozafari, M ; Sharif University of Technology
    John Wiley and Sons Inc  2023
    Abstract
    3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple... 

    Cell-Seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis

    , Article International Journal of Nanomedicine ; Volume 17 , 2022 , Pages 1035-1068 ; 11769114 (ISSN) Shokrani, H ; Shokrani, A ; Sajadi, S. M ; Seidi, F ; Mashhadzadeh, A. H ; Rabiee, N ; Saeb, M. R ; Aminabhavi, T ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2022
    Abstract
    One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular... 

    Green polymer nanocomposites for skin tissue engineering

    , Article ACS Applied Bio Materials ; 2022 ; 25766422 (ISSN) Shokrani, H ; Shokrani, A ; Jouyandeh, M ; Seidi, F ; Gholami, F ; Kar, S ; Munir, M. T ; Kowalkowska Zedler, D ; Zarrintaj, P ; Rabiee, N ; Saeb, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin... 

    Construction of an Experimental Device for Foaming Agent and an Experimental Study of the Properties of Foaming Agent

    , M.Sc. Thesis Sharif University of Technology Mohammad Karami (Author) ; Bazargan, Mohammad (Supervisor)
    Abstract
    The primary purpose of acidizing operations in the oil and gas industry is to enhance hydrocarbon production. Acidizing has been a common and conventional method for years, especially when production engineers face issues like declining reservoir pressure leading to reduced production rates. Initially, the treatment solution is referred to as matrix acidizing. In acidizing operations, different additives are combined with the acid to control its behavior in the reservoir. These additives may include iron control agents, corrosion inhibitors, friction reducers, and more. Incompatibility among these additives, the acid, and reservoir fluids can lead to severe damage to the reservoir.... 

    Numerical Analysis of An Annular Gas Turbine Combustor

    , M.Sc. Thesis Sharif University of Technology Gandomi, Mohammad Hossein (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The goal of this research is the simulation of the annular combustion chamber of the turbine engine utilized by liquid fuel. The achievement to this goal will lead to create numerical tools for parametric study, analysis and combustion chamber designing.For this reason simple geometry has been considered. This simplicity of geometry causes to facilitate in parametric study and decrease in saving time for modeling and meshing. This combustion chamber is a simplified model of engine CF6. In recent study, the k – ε realizable model has been used for turbulence modeling. For non-adiabatic condition, chemical reaction is dissolved by utilizing probability density function along with laminar... 

    Recent advances in aqueous virus removal technologies

    , Article Chemosphere ; Volume 305 , 2022 ; 00456535 (ISSN) Al-Hazmi, H. E ; Shokrani, H ; Shokrani, A ; Jabbour, K ; Abida, O ; Mousavi Khadem, S. S ; Habibzadeh, S ; Sonawane, S. H ; Saeb, M. R ; Bonilla-Petriciolet, A ; Badawi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses... 

    A misbehavior‐tolerant multipath routing protocol for wireless Ad hoc networks [electronic resource]

    , Article International Journal of Research in Wireless Systems (IJRWS) ; Vol. 2, Issue 9, pp. , Sep. 2013 Sedghi, H. (Haniyeh) ; Pakravan, Mohammad Reza ; Aref, Mohammad Reza ; Sharif University of Technology
    Abstract
    Secure routing is a major key to service maintenance in ad hoc networks. Ad hoc nature exposes the network to several types of node misbehavior or attacks. As a result of the resource limitations in such networks nodes may have a tendency to behave selfishly. Selfish behavior can have drastic impacts on network performance. We have proposed a Misbehavior-Tolerant Multipath Routing protocol (MTMR) which detects and punishes all types of misbehavior such as selfish behavior, wormhole, sinkhole and grey-hole attacks. The protocol utilizes a proactive approach to enforce cooperation. In addition, it uses a novel data redirection method to mitigate the impact of node misbehavior on network... 

    Theoretical and Experimental Study to Conversion of AUC to UO2 by Microwave Heating

    , Ph.D. Dissertation Sharif University of Technology Labbaf, Mohammad Hossein (Author) ; Otukesh, Mohammad (Supervisor) ; Ghannadi Maragheh, Mohammad (Co-Advisor) ; Ghasemi, Mohammad Reza (Co-Advisor)

    Estimating Possible Effects of Subsidies in Competition and Development of Fixed Broadband Internet

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Ali (Author) ; Vesal, Mohammad (Supervisor) ; Rahmati, Mohammad Hossein (Supervisor)
    Abstract
    In this work, the dynamic competition between firms providing internet services is studied. The framework is Markov equilibrium whereby structural parameters are obtained using two-step estimations, allowing for analyzing the situation in case of subsidies for service upgrade. The results show that such subsidy has little effect on the number of firms while increasing the number of fast firms  

    SAR Imaging Using the TomoSAR Technique to Resolve Multiple Scatterers

    , M.Sc. Thesis Sharif University of Technology Omati, Mohammad Mahdi (Author) ; Bastani, Mohammad Hassan (Supervisor) ; Karbasi, Mohammad (Co-Supervisor)
    Abstract
    During the last few years, the study of urban environment structures is considered as a research field of interest in remote sensing. In satellite observations of the earth's surface, continuous imaging in terms of time and space has caused the remote sensing technique to be proposed as a useful and efficient tool for the analysis of urban areas. Obtaining quantitative spatial information from the urban environment in fields such as determining the height of buildings plays an essential role in urban planning, monitoring damage to buildings, establishing communication bases and digital cities. During the last two decades, the use of Tomosar approach in order to reconstruct the structures of...