Loading...
Search for: soltanali--saeed
0.122 seconds

    Nano-Zeolite Synthesis Adsorbents for Removal of Mercaptanes from the Butane and the Propane

    , M.Sc. Thesis Sharif University of Technology Khosravanian, Abdollah (Author) ; Soltanieh, Mohammad (Supervisor) ; Shayegh, Flora (Supervisor) ; Soltanali, Saeed (Co-Advisor)
    Abstract
    In this study nano zeolite was hydrothermally synthesized in order to remove ethyl and methyl mercaptans from propane and butane stream. Fifteen experimental runs were conducted using D-Optimal method experimental design to synthesize NaY, NaX and NaA zeolites. The products were characterized by measuring the morphology, particle and crystal size, surface area, adsorption isotherm, pore size, and pore volume of the products by XRD, FE-SEM, TEM and BET analyses. The pore size for NaA type zeolites is about 4 Angstrom whereas the molecular size for ethyl mercaptan and methyl mercaptan is between 4 and 5 Angtrom, Therefore, NaA zeolite is inappropriate for removing ethyl and methyl mercaptans... 

    Synthesis of Alumina Support Modified with X and Y Zeolites as a Catalyst of Diesel Hydrodesulfurization Process

    , M.Sc. Thesis Sharif University of Technology Karami, Hamid (Author) ; Kazemeini, Mohammad (Supervisor) ; Soltanali, Saeed (Supervisor) ; Rashidzadeh, Mehdi (Co-Supervisor)
    Abstract
    Environmental destructive effects of gases caused by combustion of sulfur compounds in the fuel, poisoning of catalysts, corrosion of equipment, as well as intensification of environmental considerations and new standards adopted for maximum sulfur content has made the desulfurization of fuels important; The desulfurization method using hydrogen has a high potential to remove sulfur. One of the major challenges in this process is to find the proper catalyst that has the best performance for this process. Ni (or Co) Mo (or W)/ γ-Al2O3 catalysts have high potential for using as a catalyst for the desulfurization process from a variety of large-scale or industrial hydrocarbon cuts. According to... 

    Synthesis, Evaluation and Modification of Suitable Metal–Organic Frameworks (MOFS) for Desulfurization of Hydrocarbon Cuts

    , M.Sc. Thesis Sharif University of Technology Ghassa, Mahya (Author) ; Khorashe, Farhad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor) ; Soltanali, Saeed (Co-Supervisor)
    Abstract
    During fuel combustion, aromatic sulfur compounds in energy fuels convert into sulfur oxides, which cause major environmental problems such as acidic rain, global warming, and air pollution. Absorption desulfurization is one of the promising and economical methods to remove these sulfur compounds from fuels. Metal-organic frameworks (MOFs) are a class of nanoporous materials that are of interest for use as adsorbents due to their high specific surface area, unique surface adsorption properties, high adsorption capacity, tunable porosity, flexible dynamic behavior, and diversity in functional and metal groups. In this research, we first synthesized five metal-organic frameworks, namely... 

    Synthesis and Evaluation of Modified Zeolites for Separation of Acidic Gases

    , M.Sc. Thesis Sharif University of Technology Najafi, Amir Mohammad (Author) ; Khorasheh, Farhad (Supervisor) ; Soltanali, Saeed (Supervisor) ; Ghasabzadeh, Hamid (Co-Supervisor)
    Abstract
    The adsorption equilibria of carbon dioxide, methane, and nitrogen on pelletized cation-exchanged faujasite zeolite (with alkali, alkaline earth, and transition metal ions) have been investigated by a volumetric apparatus. The standard instrumental analytical techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray spectroscopy (EDX), and atomic absorption spectroscopy (AAS) were utilized to characterize binder-free modified zeolites. The EDX spectra and AAS results revealed that the ion-exchange was successfully achieved with expected tendencies. The results indicate that the type of cation present in the zeolite... 

    Desulfurization of Petroleum Coke in Aluminium Industry

    , M.Sc. Thesis Sharif University of Technology Askari, Hadis (Author) ; Khorasheh, Farhad (Supervisor) ; Soltanali, Saeed (Supervisor) ; Baghalha, Morteza (Co-Advisor) ; Tayebi, Shokufeh (Co-Advisor)
    Abstract
    In this study, desulfurization of petroleum coke has been investigated for use in aluminum industry. To reduce sulfur content in petroleum coke, desulfurization has been investigated by two methods of solvent extraction and molten caustic leaching. The method of molten caustic leaching at temperatures of 400-600 °C has been investigated. Other effective parameters on the desulfurization of petroleum coke are the mass ratio of alkali to feed (petroleum coke) in the range of 0.5-1.5 and the time of 1-3 hour and the mesh size of 200-600 micron. In this study, the conditions of desulfurization of petroleum coke using potassium hydroxide have been investigated. Results show that by using the... 

    Construction And Evaluation of Nickel Catalysts Based on Silica Structures to Apply in the Hydrogenation Process of Benzene

    , M.Sc. Thesis Sharif University of Technology Shafiei Dezaki, Mohammad Reza (Author) ; Khorashe, Farhad (Supervisor) ; Soltanali, Saeed (Supervisor) ; Mashaiekhi, Maryam (Co-Supervisor)
    Abstract
    Benzene is one of the most famous aromatic compounds characterized by ringing and stability, which is formed by both natural processes and human activities. Benzene is also a substance found in hydrocarbons such as gasoline and hexane. International organizations for cancer research and global health have identified benzene as a carcinogen. Also, polymer grade hexane and in fact the same benzene-free hexane is widely used in the petrochemical and lubrication industries (food industry) of the country, which also requires reducing benzene from 6 to 2% to less than 50% ppm. Since partial and selective hydrogenation of benzene is performed because it is a heterogeneous process, ie at the surface... 

    Optimizing parameters affecting synthesis of a novel Co–Mo/GO catalyst in a Naphtha HDS reaction utilizing D-optimal experimental design method

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 78 , 2017 , Pages 566-575 ; 18761070 (ISSN) Hajjar, Z ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Sharif University of Technology
    2017
    Abstract
    In this research effects of important synthesis parameters upon catalytic performance of a novel graphene based catalyst for an HDS reaction were investigated. The graphene oxide (GO) used as a support was initially prepared through chemical exfoliation of graphite via modified Hummers method. In this venue the impregnation method, promoter/main metallic spices ratio, total metal loading of the active phase and amount of chelating agent were systematically understudied. Thus, GO was impregnated with active metallic phases through the hydrothermal and modified incipient wetness impregnation techniques. In both procedures, 1:2, 1:3 and 1:4 weight ratios of Co/Mo with the percentages of the... 

    Desulfurization of high sulfur petroleum coke by molten caustic leaching

    , Article Egyptian Journal of Petroleum ; Volume 28, Issue 2 , 2019 , Pages 225-231 ; 11100621 (ISSN) Askari, H ; Khorasheh, F ; Soltanali, S ; Tayyebi, S ; Sharif University of Technology
    Egyptian Petroleum Research Institute  2019
    Abstract
    Desulfurization by molten caustic leaching (MCL) at 400–500 °C has been investigated in order to reduce the sulfur content of petroleum coke. Effective parameters on desulfurization of petroleum coke, other than temperature, include alkali to feed (petroleum coke) mass ratio, time and mesh size in the ranges of 0.5–1.5, 1–3 h and 200–600 µm, respectively. In this work, petroleum coke desulfurization conditions using solid KOH have been studied. Maximum petroleum coke desulfurization by MCL method has been obtained by Taguchi L9 design using alkali to feed mass ratio of 1, temperature of 600 °C, time of 2 h and mesh size of 200 µm. The changes in the main groups on the coke surface have been... 

    The effect of acid treatment and calcination on the modification of zeolite X in diesel fuel hydrodesulphurization

    , Article Canadian Journal of Chemical Engineering ; Volume 100, Issue 11 , 2022 , Pages 3357-3366 ; 00084034 (ISSN) Karami, H ; Kazemeini, M ; Soltanali, S ; Rashidzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Faujasite (X, Y) zeolites are considered the main and important catalysts in hydrorefining processes. In order to obtain zeolites with higher acidity and volume of mesopores, post-synthesis modification, dealumination by different pickling techniques (using ethylenediamine tetraacetic acid [EDTA] chelating agent), and thermal treatment (calcination) were employed. The dealumination process led to the removal of the aluminum atoms from the zeolite structure and a rise in acidity while maintaining the zeolite crystalline lattice. X-ray diffraction (XRD), atomic absorption spectrometry (AAS), Fourier-transform infrared (FT-IR), field-emission scanning electron microscopy (FE-SEM),... 

    Influence of adding a modified zeolite-Y onto the NiMo/Al2O3 catalyst utilized to produce a diesel fuel with highly reduced sulfur content

    , Article Microporous and Mesoporous Materials ; Volume 332 , 2022 ; 13871811 (ISSN) Karami, H ; Kazemeini, M ; Soltanali, S ; Rashidzadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In order to make a Na–Y zeolite with Si/Al ratio of 2.27 more acidic with a higher volume of mesopores, a combination of different and consecutive methods including; chemical (i.e.; utilizing different compounds, such as NH4F and EDTA) and thermal/hydrothermal (i.e.; implementing calcination/steaming) methods, were employed for modification and dealumination. The combination of acidic-hydrothermal dealumination method led to a further structural collapse compared to that of the acidic calcination. In comparison with the other dealumination methods, the fluorination strategy (i.e.; utilizing NH4F) resulted in a zeolite with higher crystallinity, acidity, and specific surface area. The... 

    Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 123 , 2017 , Pages 144-151 ; 01652370 (ISSN) Hajjar, Z ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Bahadoran, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Co-Mo/Graphene composite synthesized for the first time through the spray pyrolysis method and applied as an HDS catalyst to produce a sulfur free Naphtha feed. The major advantage of the spray pyrolysis technique was its concurrent capability of the in-situ and simultaneous Co-Mo deposition upon the graphene. The produced material was characterized through the XRD, BET-BJH, FTIR and Raman spectroscopy as well as; the NH3-TPD, TPR, TEM and FESEM techniques. The prepared catalyst showed unique properties such as; high degree of total acidity of 5.1 (vs. the usual 0.2–2.0) mmole NH3/g-cat and a relatively high surface area of 705 vs. 189 m2/g of the commercial material. Furthermore, the... 

    Performance of three-level spectrally encoded spreadtime CDMA in the presence of multiple interferences [electronic resource]

    , Article IET Communications ; July 2011, Volume 5, Issue 10, P. 1328-1335 Mashhadi, S. (Saeed) ; Mashhadi, Saeed ; Salehi, J. A ; Sharif University of Technology
    Abstract
    In this study the authors present an in-depth study, analysis and discussion on maximum likelihood (ML)-based receiver for a typical spectrally encoded spread-time CDMA in the presence of multiple narrowband interference (NBI) signals in an additive white Gaussian noise channel. Furthermore, the authors demonstrate that by combining useful properties of ML-based receiver and three-level codes, that is, codes with values of -1, 0, +1, the authors can introduce a new strategy in which superior performance with respect to previous receiver structure based on two-level codes, that is, codes with values of -1, +1, can be attained. With the help of an example, the authors drive, first, the... 

    Investigation of Multiphase Flow in Oil Wells (with Focus on Two Phase Flow), Flow Pattern Recognition and Modeling

    , M.Sc. Thesis Sharif University of Technology Shams, Reza (Author) ; Shad, Saeed (Supervisor) ; Jamshidi, Saeed (Supervisor)
    Abstract
    The concurrent flow of oil and water is a common occurrence in the field of multiphase flow in different fields including petroleum industry. In oil and gas, production engineers often face a situation in which more than one phase is flowing through the producers. In such conditions an accurate assessment of pressure loss inside the well plays a vital role in efficient and effective production planning. Changes in well orientation, wellbore diameter, reservoir and fluid properties as well as fluid flow rates are among parameters in which will affect the flow patterns that can occur inside a well during its life time. These flow patterns are created as a result of a competition between... 

    Casing Design Optimization Considering Drilling and Production Conditions

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Mahdi (Author) ; Jamshidi, Saeed (Supervisor) ; Shad, Saeed (Supervisor)
    Abstract
    Casing design is one of the most expensive parts in the drilling of oil wells, and any cost reduction with the basic design of these casing strings will significantly reduce the total cost of the operation. In recent years, occurring scenarios-based casing design has become popular; Because in many cases, it eliminates non-occurring scenarios such as gas kick and saves on drilling costs. In this study, we have tried to investigate all scenarios that may occur during the lifetime of the well, whether drilling or production, and for each well, based on its own field information, possible scenarios for each casing part are selected separately and the applying loads are calculated. For this... 

    PRI (Palm Rotation Indicator): a metric for postural stability in dynamic nonprehensile manipulation [electronic resource]

    , Article Journal of MECHANIKA ; 2012, Vol. 18, No. 4, pp. 461-466 Beigzadeh, B. (Borhan) ; Meghdar, Ali ; Sohrabpour, Saeed ; Sharif University of Technology
    Abstract
    In this study, we discuss the postural stability of a nonprehensile manipulation problem, which deals with multibody objects. As a metric for postural stability, we define PRI. Then, the system is posturally stable, if PRI is inside the convex hull of the object-manipulator contact surface. We then discuss that dynamic biped locomotion is a special case of dynamic nonprehensile manipulation in all aspects; we prove that ZMP (zero-moment point) and FRI (zoot rotation indicator) are special cases of PRI (palm rotation indicator). Simulations and experiments corresponding to simple examples support the results  

    Sum Coloring of Graphs

    , M.Sc. Thesis Sharif University of Technology Heydari, Asrin (Author) ; Akbari, Saeed (Supervisor)

    On the Domination Polynomial of Graphs

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Zeinab (Author) ; Akbari, Saeed (Supervisor)

    Some Applications of Combinatorial Nullstellensatz in Graph Theory and Combinatorics

    , M.Sc. Thesis Sharif University of Technology Fakhari, Amin (Author) ; Akbari, Saeed (Supervisor)

    Electrochemical Determination of Piroxicam at thin Carbon
    Nanoparticle Composite And Investigation of the Electrochemical Behavior and Synthesis of Catechols in the Presence of Mercapto Methyl Tetrazol as a Nucleophile

    , M.Sc. Thesis Sharif University of Technology Jokar, Effat (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    The electrochemical oxidation behavior of the anti-inflammatory drug piroxicam was investigated. A carbon nanoparticle (CNP)-chitosan (CS) film-coated graphite electrode (PGE) was fabricated and the electrochemical behaviors of piroxicam on its surface was investigated by the means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). In comparison to the bare PGE, at the surface of the CNP-CS film modified electrode, the oxidation peak current of piroxicam increased significantly and the peak potential shifted negatively. Consequently, a simple and sensitive electroanalytical method was developed for the determination of piroxicam. The... 

    Chemically Modified Electrodes Based on Conducting Polymers and Carbon Nanotubes: Application to Voltammetric Determination of Some Biological and Pharmaceutical Compounds

    , M.Sc. Thesis Sharif University of Technology Asadian, Elham (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. In the first part of this thesis, a new type of modified electrodes, constructing multi-walled carbon nanotubes (MWCNTs) and polypyrrole is prepared in a layer-by-layer process. In this procedure, the glassy carbon electrode is casted first by a drop suspension of MWCNTs, leading to formation a thin film on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNTs pre-coated electrode. The modification...