Loading...
Search for: soroush--soheil
0.115 seconds

    Studying the Problem of Maximum Matching in Stochastic Environments

    , M.Sc. Thesis Sharif University of Technology Soheil, Farehe (Author) ; Ghodsi, Mohammad (Supervisor)
    Abstract
    The problem studied in this research is the online stochastic bipartite matching. In this problem the vertices of one side of the given graph arrive in an online manner, with respect to a probability distribution. Also the edges of the graph exist according to a given probability distribution and one should perform queries from an oracle to know about the existence of an edge. The given graph shall be weighted or unweighted. The goal here is to find a maximum matching in the graph that is as close to the omniscient optimum as possible, while the number of queries performed per vertex is limited. In the general case of the problem, there are no specific conditions, but in other versions,... 

    BRST quantization of noncommutative gauge theories

    , Article Physical Review D ; Volume 68, Issue 10 , 2003 ; 05562821 (ISSN) Soroush, M ; Sharif University of Technology
    American Physical Society  2003
    Abstract
    In this paper, the Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformation is presented for the noncommutative U(N) gauge theory. The nilpotency of the charge associated with this symmetry is then proved. As a consequence of the spacelike noncommutativity parameter, the Hubert space of physical states is determined by the cohomology space of the BRST operator as in the commutative case. Further, the unitarity of the S-matrix elements projected onto the subspace of the physical states is deduced. © 2003 The American Physical Society  

    BRST quantization of noncommutative gauge theories

    , Article Physical Review D - Particles, Fields, Gravitation and Cosmology ; Volume 67, Issue 10 , 2003 ; 15507998 (ISSN) Soroush, M ; Sharif University of Technology
    2003
    Abstract
    In this paper, the Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformation is presented for the noncommutative [Formula Presented] gauge theory. The nilpotency of the charge associated with this symmetry is then proved. As a consequence of the spacelike noncommutativity parameter, the Hilbert space of physical states is determined by the cohomology space of the BRST operator as in the commutative case. Further, the unitarity of the S-matrix elements projected onto the subspace of the physical states is deduced. © 2003 The American Physical Society  

    Unsteady Analysis of a Slinger Combustion Chamber by the Chemical Reactor Network Model

    , M.Sc. Thesis Sharif University of Technology Soroush, Fariborz (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Up to early seventies, Gas turbine combustor design was very time consuming and costly process including trial and errors through test rigs. Over the time analytical-experimental relationships take place as one of the key rules in the design processes. With the increasing power of computer calculations, computational fluid dynamics find its way in the procedure. Obtaining a deeper understanding of flow conditions and geometry inside the chamber, a great reduction in production time and cost of revisions to rigs and samples were achieved. Finding a precise prediction of polluting elements like NOx (less than 10 ppm) after many run hours and enormous computing resources, CFD methods must... 

    Workspace measurement of the surgeon's upper limb during an arthroscopy and three laparoscopy operations using inertial sensor systems

    , Article 2013 E-Health and Bioengineering Conference, EHB 2013 ; 2013 ; 9781479923731 (ISBN) Soroush, A ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    The aim of this study was to determine the workspace of surgeon's body for designing more efficient surgical robots in the operation rooms. Five wearable inertial sensors were placed near the wrist and elbow joints and also on the thorax of surgeons to track the orientation of upper limb. Assuming that the lengths of five segments of an upper limb were known, measurements of the inertial sensors were used to determine the position of the wrist and elbow joints via an established kinematic model. subsequently, to assess the workspace of surgeon upper body, raw data were collected in the arthroscopy and laparoscopy operations. Experimental results demonstrated that the workspaces of surgeon's... 

    Modeling and Simulation of Alcoholic Fermentation of Sugarcane Blackstrap Molasses

    , M.Sc. Thesis Sharif University of Technology Soroush, Mohammad (Author) ; Yaghmaee, Sohila (Supervisor)
    Abstract
    Fed-batch fermentation is a valuable and cost-effective method for bio-based production of various products such as ethanol, which has various applications in various industries.In recent years, bioethanol production has been given special attention in many countries. For this reason, the mathematical modeling of production of these products is very important for their optimal and cost-effective production. Given the transient and dynamic nature of fermentation and its specific complexity, mathematical modeling of fed-batch bioreactors is difficult and complicated. In this research, an unstructured model was used to predict the production of ethanol from blackstrap sugar cane molasses based... 

    Effect of capillary tube's shape on capillary rising regime for viscos fluids

    , Article 2017 International Conference on Nanomaterials and Biomaterials, ICNB 2017, 11 December 2017 through 13 December 2017 ; Volume 350, Issue 1 , 2018 ; 17578981 (ISSN) Soroush, F ; Moosavi, A ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube's shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that... 

    Detection of change to SSVEPs using analysis of phase space topological : a novel approach

    , Article Neurophysiology ; Volume 51, Issue 3 , 2019 , Pages 180-190 ; 00902977 (ISSN) Soroush, M. Z ; Maghooli, K ; Pisheh, N. F ; Mohammadi, M ; Soroush, P. Z ; Tahvilian, P ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    A novel method based on EEG nonlinear analysis and analysis of steady-state visual evoked potentials (SSVEPs) has been processed. The EEG phase space is reconstructed, and some new geometrical features are extracted. Statistical analysis is carried out based on ANOVA, and most significant features are selected and then fed into a multi-class support vector machine (MSVM). Both offline and online phases are considered to fully address SSVEP detection. In the offline mode, the whole design evaluation, feature selection, and classifier training are performed. In the online scenario, the proposed method is evaluated and the detection rate is reported for both phases. Subject-dependent and... 

    Modelling of Frictional Cracks by the Extended Finite Element Method Considering the Effect of Singularity

    , M.Sc. Thesis Sharif University of Technology Saeed Monir, Saeed (Author) ; Khonsari, Vahid (Supervisor) ; Mohammadi, Soheil (Co-Advisor)
    Abstract
    When a crack is subjected to a compression field, it will close and its edges will get into contact with each other. Depending on the direction and magnitude of the loads and also the coefficient of friction, ‘stick’ or ‘slip’ situationsbetween the edges will occur. This type of crack is known as ‘frictional crack.’ In this project, first these cracks are studied analytically and the order of singularity is derived using asymptotic analysis and also the analytical fields are determined for both ‘isotropic’ and ‘orthotropic’ materials. Then, numerical simulations are carried out using extended finite element method which is considered as the most powerful means for analyzing the problems... 

    Theoretical and Numerical Analysis of Shock Waves Propagation in Porous Medium

    , Ph.D. Dissertation Sharif University of Technology Nemati Hayati, Ali (Author) ; Ahmadi, Mohammad Mehdi (Supervisor) ; Mohammadi, Soheil ($item.subfieldsMap.e)
    Abstract
    Particulate porous mateials have always been of interest in terms of reducing shock waves effects in different protective applications. Therefore, the physics governing the flow in porous media is especially significant for which different models have been presented by the researchers. The complexities of these media have caused many existing models to be unable to properly predict the behavior of granular media under shock loadings. On the other hand, the complexity of the equations makes the numerical solution of them cumbersome and costly in a way that many researchers do not solve the whole coupled equations and reduce their number. In addition, current high-resolution TVD solutions of... 

    How to synchronize and register an optical-inertial tracking system

    , Article Applied Mechanics and Materials ; Volume 332 , 2013 , Pages 130-136 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Soroush, A ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    Multi-sensor tracking is widely used for augmentation of tracking accuracy using data fusion. A basic requirement for such applications is the real time temporal synchronization and spatial registration of two sensory data. In this study a new method for time and space coordination of two tracking sensor measurements has been presented. For spatial registration we used a body coordinate system and then applied the effect of the level arm. The time synchronization was done based on least mean square (LMS) error method. This method was implemented to synchronize the position and orientation of an object using Inertial (1IMU) and Optical (Optotrak) tracking systems. The results of synchronized... 

    Design and implementation of an improved real-time tracking system for navigation surgery by fusion of optical and inertial tracking methods

    , Article Applied Mechanics and Materials ; Volume 186 , 2012 , Pages 273-279 ; 16609336 (ISSN) ; 9783037854440 (ISBN) Soroush, A ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    The fusion of the optical and inertial tracking systems seems an attractive solution to solve the shadowing problem of the optical tracking systems, and remove the time integration troubles of the inertial sensors. We developed a fusion algorithm for this purpose, based on the Kalman filter, and examined its efficacy to improve the position and orientation data, obtained by each individual system. Experimental results indicated that the proposed fusion algorithm could effectively estimate the 2 seconds missing data of the optical tracker  

    A non-user-based BCI application for robot control

    , Article 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018, 3 December 2018 through 6 December 2018 ; 2019 , Pages 36-41 ; 9781538624715 (ISBN) Zanganeh Soroush, P ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Steady State Visual Evoked Potential (SSVEP) based Brain Computer Interfaces (BCI) can be great assistance for people suffering from physical disabilities due to their high accuracy, high speed, an acceptable number of possible targets, etc. Many researchers have managed to design such systems. Most of these BCIs utilize methods for frequency detection which cause the system to need a training phase for each new user, making the system a user-based one. That is why our goal was to design a BCI that not only has accuracy and speed comparable to similar systems, but also does not need any training phase and thus can be used by new users right away. Our final design got a mean accuracy of... 

    Investigation on Seismic Performance of Eccentrically Braced Frames with Vertical Post-tensioned Cables

    , M.Sc. Thesis Sharif University of Technology Goodarzi Soroush, Adel (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Although the moment frame can show deformable behavior against seismic loads, but its flexibility and low stiffness, especially in tall structures, cause the governance criterion to be designed. The use of eccentrically braced frames was able to solve the displacement problem to some extent, because it has the characteristics of both flexural frame systems and conccentric bracing. Different methods have been proposed to eliminate residual displacements in this type of system, one of which is the use of post tensioned cables. The aim of this study was to investigate the seismic behavior of a steel structure with a eccentrically braced frame system with post tension cable.The cables are anchor... 

    Induction of fuzzy classification systems using evolutionary ACO-Based algorithms

    , Article 1st Asia International Conference on Modelling and Simulation - Asia Modelling Symposium 2007, AMS 2007, 27 March 2007 through 30 March 2007 ; 2007 , Pages 346-351 ; 0769528457 (ISBN); 9780769528458 (ISBN) Abadeh, M. S ; Habibi, J ; Soroush, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2007
    Abstract
    In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on Intrusion Detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is capable of producing a reliable fuzzy rule based classifier for intrusion detection. © 2007 IEEE  

    Effects of COVID-19-related psychological distress and anxiety on quality of sleep and life in healthcare workers in Iran and three European countries

    , Article Frontiers in Public Health ; Volume 10 , 2022 ; 22962565 (ISSN) Zangeneh Soroush, M ; Tahvilian, P ; Koohestani, S ; Maghooli, K ; Jafarnia Dabanloo, N ; Sarhangi Kadijani, M ; Jahantigh, S ; Zangeneh Soroush, M ; Saliani, A ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Introduction: The COVID-19 pandemic has considerably affected human beings most of whom are healthcare workers (HCWs) combating the disease in the front line. Methods: This cross-sectional study aims to explore the effects of stress and anxiety caused by COVID-19 on the quality of sleep and life in HCWs, including physicians, nurses, and other healthcare staff. In this global study, we asked 1,210 HCWs (620 and 590 volunteers from Iran and European countries, including Germany, the Netherlands, and Italy, respectively), who age 21–70, to participate in the test. Several measures of COVID-related stress, anxiety, sleep, and life quality, including the 12-item General Health Questionnaire... 

    Predicting fracture of solder joints with different constraint factors

    , Article Fatigue and Fracture of Engineering Materials and Structures ; Volume 42, Issue 2 , 2019 , Pages 425-438 ; 8756758X (ISSN) Nourani, A ; Mirmehdi, S ; Farrahi, G ; Soroush, F ; Sharif University of Technology
    Blackwell Publishing Ltd  2019
    Abstract
    Double cantilever beam (DCB) specimens of 2.5-mm-long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second−1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress... 

    Investigation of Sintering Behavior of BaTiO3 Nanoparticles Synthesized Via Hydrothermal Method

    , M.Sc. Thesis Sharif University of Technology Soroush, Soheil (Author) ; Nemati, Ali (Supervisor) ; Simchi, Abdolreza (Supervisor)
    Abstract
    In the present work, Barium Titanate nanoparticles were synthesized by a facile hydrothermal method at 180oC for 4 hours and their sintering behavior was studied. The characterization tests illustrated that the obtained powder was BaTiO3 single phase with excess Ti content from stoichiometric composition. The average particle size of about 50 nm and a narrow particle size distribution was noticed. SEM investigations showed that the samples sintered at temperatures less than 1250oC had plate-like grains. This behavior resulted from twin plates existed in the grains and facetted grain boundaries. At the temperatures more than 1250oC, the grains became polygonal due to the formation of trace... 

    A prototype system to measure the trunk angle in sagital plane

    , Article Proceedings of the 8th IASTED International Conference on Biomedical Engineering, Biomed 2011, 16 February 2011 through 18 February 2011, Innsbruck ; 2011 , Pages 300-304 ; 9780889868663 (ISBN) Mokhlespour, M. I ; Ramezanzadeh, M ; Narimani, R ; Soroush, A ; Sharif University of Technology
    2011
    Abstract
    The most prevalent musculoskeletal condition and one of the most disabilities are caused by low back pain. In the low back pain, a large variety of evaluation tools is presented to assess the results of the treatment; therefore, it is important to measure the trunk angle in order to determine the progress during patient's treatment. In this project, we developed a low cost prototype system for flexion-extension movement to measure the angle of the trunk in sagital plane. The system consists of clothing that is stretchable; a Rubbery Ruler sensor (RRs) attached on clothing, data acquisition system. Inertial Magnetic Unit (IMU) sensor installed on spine is used to calibrate the orientation for... 

    Beyond pull-in stabilization of dual axis micromirrors using fuzzy controllers

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 4 , August , 2010 , Pages 795-801 ; 9780791844120 (ISBN) Moeenfard, H ; Ahmadian, M. T ; Soroush, A ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    Dual axis micromirrors are actuated using strongly nonlinear electrostatic actuation and their operating range suffers from the pull-in problem. So investigation of their dynamics and control issues has become a challenge for the researchers. The current paper makes use of fuzzy controllers for the purpose of stabilizing the dual axis micromirror at the desired tilt angles beyond pull-in. At first the dynamic model of the micromirror is presented. Then for the purpose of finding the linguistic laws governing the system behavior, several step voltages are introduced to the system. The proposed fuzzy controller consists of singleton fuzzifier, product inference engine and center average...