Loading...
Search for: tahami--reza
0.095 seconds

    A fuzzy modeling and control method for PWM converters

    , Article Proceedings of EPE-PEMC 2010 - 14th International Power Electronics and Motion Control Conference, 6 September 2010 through 8 September 2010 ; September , 2010 , Pages T3186-T3190 ; 9781424478545 (ISBN) Tahami, F ; Nejadpak, A ; Sharif University of Technology
    2010
    Abstract
    The state-space averaging applied to switched networks generally results in nonlinear systems. It is common to perform a small signal linearization about an operating point to obtain a linear system. When the variations in signals are large, e.g., in PFC rectifiers, the small signal approximation produces results that are susceptible to instability problems. In this paper a class of piecewise linear models merged by fuzzy system are introduced for PWM converters. The necessary and sufficient and conditions for stability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a buck-boost converter. The simulation and experimental results... 

    Zero-voltage-Transition with dual resonant tank for bridgeless boost PFC rectifier with low current stress

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 241-247 ; 9781509003754 (ISBN) Tahami, F ; Yazdani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, a novel zero-voltage-switching topology for power factor correction bridgeless boost rectifier is proposed. By employing an improved switch cell, ZVS for all the main switches is achieved without additional current or voltage stress. The zero-current-switching is also provided for the auxiliary switch. In all modes of operation of this converter, the input current flows through only two semiconductors. Therefore, conduction loss of this converter is as low as the conventional parent converter. With these features, the efficiency of the proposed converter is very high. A 500 W prototype is designed and simulated to verify the system performance  

    A fractional order model for steer-by-wire systems

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2009 , Pages 4161-4166 Tahami, F ; Afshang, H ; Sharif University of Technology
    2009
    Abstract
    The steer by wire system for vehicles has attracted much attention in recent years. Steer by wire systems provide many benefits in terms of functionality and at the same time present significant challenges too. It is essential to investigate the stability of steer by wire systems using a more sophisticated model rather than common approximated models. Fractional order modeling offers a good modeling framework for complex dynamical systems involving flexible structures such as multi-mass drives. In this paper a nonlinear fractional order model for steer by wire systems is presented  

    A non-linear controller design for the evaporator of a heat recovery steam generator

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 223, Issue 5 , 2009 , Pages 535-541 ; 09576509 (ISSN) Tahami, F ; Nademi, H ; Sharif University of Technology
    2009
    Abstract
    This article addresses a combined approach of sliding mode control (SMC) with generalized predictive control (GPC) to achieve fluid temperature control in the evaporator of a heat recovery steam generator. The evaporator is modelled as a first-order plus dead time process. The model is developed using the experimental data obtained at an actual power plant. An output error identification algorithm is used to minimize the error between the model and the experiments in different operating conditions. A GPC method is exploited to optimize the sliding surface and the coefficients of the switching functions used in SMC. The proposed control schemes are evaluated by thorough simulation for... 

    On model predictive control of quasi-resonant converters

    , Article Journal of Circuits, Systems and Computers ; Volume 18, Issue 7 , 2009 , Pages 1167-1183 ; 02181266 (ISSN) Tahami, F ; Ebad, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, different model predictive control synthesis frameworks are examined for DCDC quasi-resonant converters in order to achieve stability and desired performance. The performances of model predictive control strategies which make use of different forms of linearized models are compared. These linear models are ranging from a simple fixed model, linearized about a reference steady state to a weighted sum of different local models called multi model predictive control. A more complicated choice is represented by the extended dynamic matrix control in which the control input is determined based on the local linear model approximation of the system that is updated during each sampling... 

    Piecewise affine system modeling and control of PWM converters

    , Article Journal of Circuits, Systems and Computers ; Volume 16, Issue 1 , 2007 , Pages 113-128 ; 02181266 (ISSN) Tahami, F ; Molaei, B ; Sharif University of Technology
    2007
    Abstract
    The averaged switch modeling approach is a powerful method for representing the behavior of a wide variety of converters through equivalent circuits. The model is not linear and it is common to perform a small signal linearization about an operating point and design a linear controller. Models obtained with such method involve considerable approximation and produce results that are limited for high performance controller designs. In this paper a piecewise affine approximation technique is introduced for modeling PWM converters. This model is much more precise in predicting the dynamic response of averaged nonlinear model comparing the linear model. This paper also presents a piecewise linear... 

    A novel fault tolerant reconfigurable concept for vector control of induction motors

    , Article EPE-PEMC 2006: 12th International Power Electronics and Motion Control Conference, Portoroz, 30 August 2006 through 1 September 2006 ; 2007 , Pages 1199-1204 ; 1424401216 (ISBN); 9781424401215 (ISBN) Tahami, F ; Shojaei, A ; Sharif University of Technology
    2007
    Abstract
    AC drive users with sophisticated applications are demanding greater reliability to avoid process interruptions. AC motor drive systems are susceptible to sensors failure. A novel fault tolerant Field Oriented Control system for induction motors is introduced. The system maintains speed control in the event of sensors malfunction and adverse signal conditions, providing enhanced reliability. Different motor models are combined by a Fuzzy aggregation system in order to give a reliable estimate of flux vector. The proposed control system is an effective and easy to implement method giving a potential for motor drive reliability enhancement. © 2006 IEEE  

    An extended dynamic matrix control design for quasi-resonant converters

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 1147-1151 ; 9781424424054 (ISBN) Tahami, F ; Ebad, M ; Sharif University of Technology
    2008
    Abstract
    The Extended dynamic matrix control (EDMC) has been proved to extend the existing version of the linear model predictive control to control nonlinear systems. In this method, the control input is determined based on the linear model approximation of the system that is updated during each sampling interval. In this paper, by using this method, a new control scheme for quasi-resonant converters is described. This control offers an excellent transient response and a good tracking. © 2008 IEEE  

    Direct Torque Control of Permanent Magnet Synchronous Machine Using Nonlinear Flux Observer

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mokhtar (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Direct Torque Control (DTC) is one of the vector methods to control Permanent Magnet Synchronous Machines (PMSM). In order to achieve an appropriate control in vector control methods, an accurate estimation of flux is indispensable. Flux estimation should be fulfilled in a wide speed range without considerable dependence on motor parameters. Prevalent flux estimation methods are based on integration of stator voltage which is not feasible in low speed, or performed based on assumption of decoupled equations on d and q axis which is not precise for applications with fast dynamic. Different flux estimation methods are investigated in this thesis with the aim of improving the flux estimation in... 

    Design and Implementation of a Soft Switched Bidirectional Charger for Vehicle-to-grid (V2G) Applications

    , M.Sc. Thesis Sharif University of Technology Akbari, Rasoul (Author) ; Tahami, farzad (Supervisor)
    Abstract
    Due to the growing oil price and environmental considerations, tendency to use local and environmentally friendly energy sources has increased.Bidirectional transmission can be one of the key features of the smart grid,so the use of car battery connected to the grid as local energy sources makes sense. This can provide network stability, especially during peak load times. Vehicles connected to grid (V2G) is an electric vehicle or a plug-in hybrid electric vehicles can delivered the electricity to the grid. These systems require either two separate power electronic converters can be used for transmission in either directions or a two-way transfer charger. The aim of this project is to design... 

    Design and Implementation of a Soft-Switched Multiport Bidirectional Converter

    , M.Sc. Thesis Sharif University of Technology Mirzahosseini, Ramin (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In recent years, multiport bidirectional converters have been a center of attention in renewable energy systems. This research focuses on three-port bidirectional converters. First, series resonant bidirectional converter is precisely analyzed. This analysis includes sinusoidal, exact state space and small signal analysis through phasor concept. This converter can work in higher switching frequencies and higher power ratings in comparison with common DAB bidirectional converter due to its inductor impedance cancellation. To increase power rating a three-phase version is proposed which has reduced output filter capacitance. Then, three-port bidirectional resonant converter is proposed and... 

    Direct Speed Control of Permenant Magnet Synchronous Machine

    , M.Sc. Thesis Sharif University of Technology Dana, Shekoofe (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Accurate and fast position controlling is an important issue in today’s industrial needs. Drives used for position control require fast dynamics on speed control. Cascade linear controllers have sluggish response due to bandwidth limitations on speed and current loop. These structures limit the dynamics above all in high power applications where the switching frequency is low. In this thesis, deadbeat direct speed control is proposed, which overcomes limitations by cascade loops resulting in high-speed control dynamics. This approach uses a model of the plant to generate the control signals. According to measured speed and currents, the controller specifies the best voltage vector in order... 

    Design and Implementation of High Efficient Charger for Plug-in Hybrid Vehicles with Power Factor Correction Feature

    , M.Sc. Thesis Sharif University of Technology Yazdani, Farzad (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In this project the novel zero-voltage-switching topology for power factor correction bridgeless boost rectifier is proposed. By employing an improved ZVS pulse-width-modulation (PWM) switch cell, ZVS of all the main switches is achieved without additional current or voltage stress of main switches. Also for the auxiliary switch the zero-current-switching is provided. In all modes of opretion of this converter, the power path is provided by maximum two semiconductor so the conduction loss of converter is low as in conventional converter. With this features the efficiency of proposed converter is very high  

    Hybrid Modeling and Control of DC-DC Series Resonant Converters for Applications of Wide Range Power

    , Ph.D. Dissertation Sharif University of Technology Afshang, Hamid (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The subject of control and stabilization of dc-dc series resonant converter (SRC) is still a challenge in power electronics. The conventional controller design and stability analysis for this converter are based on the model which is derived using the sinusoidal approximation and averaging followed by linearization about an operating point. This model is not applicable to a SRC that operates below resonance especially in discontinuous conduction mode (DCM) because the sinusoidal approximation is no longer acceptable. However, a SRC may be purposely designed to operate in DCM. Therefore, it is essential to investigate the stability analysis and controller design using a more sophisticated... 

    Control of Quasi-Resonant Converters Using Model Predictive Control

    , M.Sc. Thesis Sharif University of Technology Ebad, Mehdi (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    DC-DC switching convertors are power electronic circuits that have various applications nowadays. Quasi-resonant convertors are a kind of these convertors that are of great interest due to their simple structure and soft switching. The goal of controlling these convertors is to achieve constant output voltage while varying the input voltage and the load by choosing a proper switching frequency. Classic controllers show drawbacks in the case of high input voltage and load tolerance, and this nonlinear behavior of the systems results in some practical challenges. In this thesis, nonlinear predictive controller for quasi-resonant Buck convertors is designed. Having designed the linear... 

    Control of Quasi-Resonant Converters Using Multiple Model Fusion

    , M.Sc. Thesis Sharif University of Technology Nejadpak, Aarsh (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Nowadays, power electronics converters with pulse width modulation (PWM) are widely used in different power circuits. Operation of semi-conductive switches during on and off conditions causes switching dissipation and consequently decreases the efficiency of the PWMs. Recently, by increasing the required power for power electronics applications, quasi-resonant converters attract attentions. Quasi-resonant converters, by adding resonant circuits to the PWM converters causes the soft switching operation (switching with zero current or voltage) and decreases the energy loss. In conventional control methods of these converters, the nonlinear average circuit model is linearized around the... 

    Design of Electrical Drive for Steer-by-Wire Systems

    , M.Sc. Thesis Sharif University of Technology Afshang, Hamid (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Hydraulic steering technology has been used in vehicles for decades. Recently, a trend has been seen towards the use of electronic steer-by-wire systems that provide greater design flexibility by customizing the connection between the steering wheel and the steering mechanism. Steer-by-Wire systems (SbW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. The task of a SbW system is two-fold: turning the steered wheels by tracking the hand wheel (HW) rotation and... 

    Wireless Power Transfer System Design using Selected Harmonic for Electric Vehicle Charging

    , Ph.D. Dissertation Sharif University of Technology Moradi, Adel (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Long lasting portable power is an ultimate desire for electronic devices. The limited capacity of the batteries in addition to the heavy weight and extra costs are the main challenges of the batteries for energy storage in large electrical devices like electric vehicles. Wireless Power Transmission (WPT) technology can address these issues by providing online electric power for these portable devices. Furthermore, this technology can supply electric devices especially portable ones by eliminating cables and connectors with more reliability.The current research is focused on optimum design of the wireless power transfer system for electric vehicle charging applications. The optimization of... 

    Control of Three-phase UPS with Nonlinear Load Using Disturbance Observer Considering Transformer Concerns

    , M.Sc. Thesis Sharif University of Technology Shahriari, Zohair (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    Nowadays, non-linear loads comprise an important part of electrical grids. One of the most essential sources of nonlinear loads is switching power supplies, which mainly include power electronic rectifiers. When power outage occurs, Uninterruptible Power Supplies (UPS) must be able to supply these loads. The nonlinearity of the load has a significant effect on the Total Harmonic Distortion (THD) of the output voltage, which may not be easily reduced, especially in three-phase inverters. Furthermore, the presence of isolating transformers in these power supplies limits the control of harmonics and intensifies the nonlinear effects of the system.In this Master Thesis, a disturbance observer is... 

    Design of Soft-Switching Inverter Using Wide Bandgap Transistors for Electric Vehicle

    , M.Sc. Thesis Sharif University of Technology Elyasi, Bijan (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The electric vehicle inverter, as one of the most important components of the vehicle, needs to have a high efficiency and also be able to work at high temperatures. Due to passing a large part of the battery power through this part and being one of the components that has the biggest power in an electric vehicle , traction inverter Efficiency has a big impact on the total efficiency of the whole vehicle . By increasing the battery voltage of electric vehicles, in order to achieve a higher charging power, the electric vehicle inverter must be able to withstand a voltage of about 800 volts input .On the other hand, in electric car inverters, the goal is to reach a power density of 100kw / L....