Loading...
Search for: taiebi-rahni--mohammad
0.126 seconds

    The Study of Megawatt Wind Turbine Rotor Performance in Presence of Contamination Using CFD

    , M.Sc. Thesis Sharif University of Technology Mohajer, Abbas (Author) ; Darbandi, Masoud (Supervisor) ; Taiebi Rahni, Mohammad (Supervisor)
    Abstract
    Considering the negative effects of contamination on wind turbine blade performance, we investigate aerodynamics performance of a one- Megawatt wind turbine. To achieve this, we compare the performance and power of the wind turbine with and without contaminations. To calculate the wind turbine output power, we use a developed wind turbine calculator, which benefits from the Blade Element Momentum (BEM) theory. Furthermore, the aerodynamics calculations are performed using of a commercial software for clean and rough airfoils. Considering the change of Reynolds number along the blade axis, the airfoil characteristics are calculated for two Reynolds numbers of 0.5 and 3.5 millions to increase... 

    Experimental Investigation of Crescent-Shaped Jets in Crossflow

    , M.Sc. Thesis Sharif University of Technology Borhani Jahromi, Javad (Author) ; Kebriaee, Azadeh (Supervisor) ; Taiebi Rahni, Mohammad (Co-Supervisor)
    Abstract
    In this thesis, the physics related to liquid jet injection from injectors with three different crescent-shaped cross-sectional levels into steady and transverse flow were studied. The imaging method in this research was based on shadowgraph, which enables high-speed imaging. With the help of the obtained images, the breakup regimes, including Rayleigh, first and second wind-induced instabilities, were observed for injection into the steady flow. Furthermore, breakup regimes for jet injection into transverse flow, including columnar, columnar-bag, and bag, were also observed. The characteristics of the breakup height in steady flow and the length and height of the breakup along with the jet... 

    Numerical Simulation of the Effects of Surface Curvature on the Cooling of Vertically-Injected Jet Layers into a Lateral Turbulent Flow

    , M.Sc. Thesis Sharif University of Technology Shalchi Tabrizi, Amir (Author) ; Taiebi Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mehdi (Supervisor)
    Abstract
    An improvement of thermal efficiency of modern gas turbines is achieved by increasing turbine inlet temperatures. One of the methods of turbine cooling is to form a film layer on the external surfaces of the blades, so that they can work at high temperatures. Most of the studies concentrate on flat plate geometries with injection through slots or rows of holes. Turbine blade surfaces usually have curvatures which seem to alter the flow field significantly on the film-cooled surfaces. However, there are few reports which investigate the effect of curvature on three-dimensional jet flow injected into the turbulent boundary layer over a curved surface. The surface curvature and the blowing... 

    Numerical Analysis of Drop Motion over a Flat Solid Surface Due to Surface Acoustic Waves, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Sheikholeslam Noori, Mahdi (Author) ; Mohammad Taiebi Rahni (Supervisor) ; Shams Taleghani, Arash (Co-Supervisor)
    Abstract
    In recent years, there have been a tremendous research performed in the field of sestems containing small scales. However, besides all advantages of such systems, microfluidic systems have extraordinary difficulties and pumping liquid drops as part of some of these systems has been very important issue. An approach related to flow control is use of surface acoustic waves (SAW), which is known as acoustofluidic device. So far, most researches have only qualitatively investigated acoustic flux phenomenon. On the other hand, computational research is ongoing more emphasizing on accuracy, optimization, and obtaining more detailed physical understanding of SAW applications. Investigation of the... 

    Computational Simulation of Flow over a Cylinder in Ground Effect, Using PANS

    , M.Sc. Thesis Sharif University of Technology Nirooei, Mohammad Hossein (Author) ; Taeibi-Rahni, Mohammad (Supervisor)
    Abstract
    Partially Averaged Navier-Stokes (PANS) turbulence approach provides a closure model for any degree of velocity field filtering, ranging from completely resolved direct numerical simulation (DNS) to completely Reynolds averaged Navier-Stokes (RANS) approach. Preliminary investigations of PANS show promising results, but there is still computational and physical issues that must be addressed. This study investigates the performance of the PANS method for turbulent flow around a cylinder in ground effect with Reynolds number of 13,200. The cylinder flow is a benchmark flow problem which has significant experimental results available for validation of PANS approach. Three different filters... 

    Numerical Simulation of Dynamic Stall of Consecutive Wind Turbine Blades' Airfoil

    , M.Sc. Thesis Sharif University of Technology Shojaa, Mohammad Ali (Author) ; Taeibi-Rahni, Mohammad (Supervisor)
    Abstract
    Today energy sources, in any kind, have their special situation in human’s life and we must use our knowledge to manage them for effective usage by decreasing losses and finding modern renewable sources. One of the best way to achieve this purpose is increasing efficiency and improve energy generator performances under different environmental conditions. In spite of the fact that wind turbines stall dynamics behavior is under investigation for 6 years, study of dynamic stall phenomenon especially over series blades still needed. By addition to this phenomenon, improper wind turbine arrange decreases efficiency too. As a matter of fact, scrutiny of dynamics stall of wind turbines serial... 

    Computational Simulation of Turbulent Incompressible Film Cooling with Consideration of Jet and Cross Flow Density and Viscosity Differences

    , M.Sc. Thesis Sharif University of Technology Salimi, Mohammad Reza (Author) ; Taibi Rahni, Mohammad (Supervisor)
    Abstract
    One of the most powerful means to increase thermal efficiency in gas turbines is to increase the turbine inlet temperature. However, due to metallurgical limitations, the turbine blades need to be cooled constantly. Thus, film cooling of blades has shown to be the most efficient way. In this study, a three-dimensional film cooling problem at jet Reynolds number of 4700 are investigated, using RANS approach and three different turbulence models, namely (Wilcox), SST(Shear Stress Transport), and the new model. A fine non-uniform staggered grid and a SIMPLE based finite volume method were used. Film cooling simulation results, including mean velocity components and turbulent kinetic energy... 

    Low-dimensional POD Simulation of Unsteady Flow around Bodies with Arbitrary Shapes

    , Ph.D. Dissertation Sharif University of Technology Moayyedi, Mohammad Kazem (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    The aim of this research was an investigation, development, and application of low- dimensional proper orthogonal decomposition (POD) method for simulation of unsteady flow around bodies. Since analytical methods have low accuracy and limitations and also experimental methods have other problems, researchers usually use computational approaches, which mostly do not have acceptable efficiency and speeds of computations (especially in 3-D unsteady flows). On the other hand, the idea of application of reduced order modelling, which orginally comes from control theories and structural analysis, have attracted many researchers in recent years. In this research, we also used POD for reduced order... 

    Numerical Analysis of a Supersonic Jet into a Subsonic Compressible Crossflow and the Effects on a Downstream Fin

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Masoud (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Jet into cross-flow interaction is one of the complex and fundamental problems in fluids dynamics and heat transfer, which is observed in various applications, such as pollutant discharges, film cooing of turbine blades, combustion chamber design of jet engines, trust vectoring systems, boundary layer control, and vertical short take-off and landing (VSTOL) aircrafts. One of the applications of this kind of flow is injection of supersonic jet into subsonic compressible cross-flow, which is used in trust vectoring systems of missiles. In this research, the two-dimensional interactions of supersonic jet into subsonic compressible cross-flow were investigated as two cases: "without a fin" and... 

    Computational Simulation of a 2D Sloshing Flow in a Rectangular Tank with Baffle, Using LBM

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Saman (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    In the this study, a numerical simulation of two-dimensional incompressible sloshing flow in a rectangular tank with baffle(s), using Lattice Boltzmann Method (LBM) is presented. Finite difference LBM and two-phase "Lee" model were used. The potential form of intermolecular forces is utilized to guarantee the stability of the numerical scheme and the discretization of the solution domain is performed by a two dimensional structured grid. Two different distribution functions are applied to obtain pressure, momentum, and composition of the particles. Furthermore, the Boltzmann transport equation is discretized, by using standard D2Q9 method. The "dropl" test case is simulated by the present... 

    Investigation of a Turbulent Flow Over a Moving Circular Cylinder, Using Standard Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Abdali, Pedram (Author) ; Taeibi Rahni, Mohammad (Supervisor)
    Abstract
    In recent years, LBM has shown to be a suitable computational method for most flow simulations. Its simplicity, adaptability for complex geometries, and capability in parallel processing are among many reasons for broad implementation of LBM these days. In this research, we have tried to take advantage of these features in the simulation of a turbulent flow over a moving circular cylinder at low CPU cost. In order to use LBM in a high Reynolds number incompressible flow over a moving solid body, one needs to pay special attention to grid quality, curved solid wall boundary condition, turbulence model, moving boundary, etc. In order to obtain a suitable practical LBM computer code, the... 

    Pore-scale Simulation of Flow around a Micro-porous Square Cylinder, Using Hybrid LBM-FVM, Considering Slip Condition Inside Porous Media

    , M.Sc. Thesis Sharif University of Technology Rostamzadeh, Hadi (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    In recent years, application of porous media is highlighted among researchers due to their wider use in micro-scale problems, such as in gas reservoirs, micro-filtering, and heat exchangers. In such applications, accurate description of flow behavior, using governing equations based on continuum assumption, is not valid, since mean free path has the same order as the characteristic length of the problem. In such cases, imposing appropriate slip condition on the fluid-solid interface of porous media (in pore-scale level), based on kinetics theory, is an appropriate approach. For this purpose, pore-scale simulation of flow inside porous media in slippery and transient regimes is carried out... 

    Two-phase Flow Modeling of Drop Impact on Moving Surfaces, Using Multiphase Lattice Boltzmann Flux Solver

    , Ph.D. Dissertation Sharif University of Technology Azadi, Ehsan (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Various situations of drop impact on solid surfaces occur widely in natural phenomena and industrial applications, as well as involve in the development of some new technologies, such as, 3D printers, interfacial materials, microfluidics, and biotechnology. Therefore, the relevant investigations have been increasing considerably in the last two decades. Most of these studies are related to the simple case of vertical drop impact on horizontal stationary surfaces, while in most cases vertical/oblique drop impact on horizontal/inclined stationary/moving surfaces in the absence/presence of a crossflow and their various combinations occur. One of the most important situations is drop impact on... 

    Simulation of Droplet Formation and Detachment, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Haghshenas, Majid (Author) ; Taeibi Rahni, Mohammad (Supervisor)
    Abstract
    The phenomena of formation and detachment of droplets are of fundamental importance in studying two-phase flows, such as spraying processes, ink jet printing, emulosin, etc. Droplets are formed under the effects of surface tension forces. After formation, forces like gravity detach the droplet from the rest of the fluid. Recent advancements in computational fluid dynamics and computers have made it feasible to have advancement in simulation of complex flows, including two-phase phenomenon. On the other hand, the lattice Boltzmann method (LBM) has been developed into an alternative and promising numerical scheme for simulating multi-component fluid flows.
    In this project, formation and... 

    Optimization of Airfoil Design Using Low-dimensional POD Method

    , M.Sc. Thesis Sharif University of Technology Marvi, Morteza (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    The aim of this research was investigation, development and application of lowdimensional proper orthogonal decomposition method for simulation of flow field and airfoil design. Sine analytical methods have low accuracy and limitations and also experimental methods have other problems, researchers usually use computational approach, which mostly do not have acceptable efficiency and speeds of computational. The idea of application of reduced order modeling which originally comes from control theories and structural analysis, have attracted many researcher in recent years. In this research, we also used POD and flow data to obtain a fast module of aerodynamic airfoil design. The goals of... 

    Two-dimensional Numerical Simulation of Bubble Bursting in the Vicinity of a Corner, Using DIM Interfacial Modeling

    , M.Sc. Thesis Sharif University of Technology Safavi, Mohammad Mahdi (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Salimi, Mohammad Reza (Co-Supervisor)
    Abstract
    Bubble collapse is a two-phase problem whose numerical simulation has many important applications in science and technology. In hydrodynamics systems (pumps, ship propellers, …), bubbles form due to cavitation. These bubbles grow and collapse These bubbles grow and collapse farther downstream and their energy destroys the surrounding walls. In medical sciences, the shear force caused by collapse of a bubble can be used to destroy adipose tissues in arteries. The small scales time in this phenomenon, as well as the compressibility of the flow in bubble collapse, are interesting challenges researchers face. The present thesis targets are two-dimensional numerical simulation of bubble collapse... 

    Numerical Simulation of Two-dimensional Sonoluminescence Phenomenon, Using Front Tracking/Ghost Fluid Method

    , M.Sc. Thesis Sharif University of Technology Moezzi Rafie, Hamid (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Sonoluminescence is a unique phenomenon in physics, which is known as the process of converting sound into light. By applying sound to a volume of liquid, with a specific geometrical shape (such as sphere) and forming standing waves around an existing bubble, the bubble first expands to a maximum radius and then gets extremely small leading to its supersonic collapse. During the collapse, the resulting shock wave approches the center of the bubble, causing extreme increase in the pressure and temperature at the center of the bubble. This causes flashing of light during small time scales (pico-seconds). This phenomenon is used in many fields, such as treatment of cancer. Also, the energy... 

    Computational Simulation of the Effect of Breathing Particle Mass and Breathing Frequency on a Human Respiratory System

    , M.Sc. Thesis Sharif University of Technology Goodarzi Ardakani, Vahid (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Our surrounding environment is full of particles with different sizes. These suspended particles enter our body through respiration process, which of course has some negative effects. Therefore, it is very important to comprehend the mechanisms and the effective parameters on these particles motion and their deposition inside the human airway. This work numerically investigates the effects of particles mass and breathing frequency on the deposition of particles in human respiratory system. To this end, a realistic 3-D model of human respiratory system geometry, including nostrils, vestibule, nasal cavity, human sinuses, nasopharynx, oropharynx, larynx, trachea, and main bronchus has been... 

    Computational Simulation of Micromixing, Using LBM

    , M.Sc. Thesis Sharif University of Technology Hosseini-zade, Mohammad (Author) ; Taeibi-Rahni, Mohammad (Supervisor)
    Abstract
    Nowadays, microfluidic flow appears in many applications, such as medical, biological, and chemical industries. Where as, micromixing, which deals with mixing of microfluidic flow in micro channels, appears to be an important issue to many researchers. In such systems, molecular diffusion plays an important role. On the other hand, lattice Boltzmann method is a relatively new simulation technique for complex fluid systems and has become interesting to many researchers in computational physics. In this study, computational simulation of such mixing process, using LBM is the main objective. Different obstacle layouts inside a microchannel have been investigated. Chaotic advection and jet... 

    Numerical Simulation of the Impact of a Drop with a Flat Surface in a Cross Flow, Using LBM

    , M.Sc. Thesis Sharif University of Technology Yazdani Dizicheh, Hamideh (Author) ; Taebi Rahni, Mohammad (Supervisor)
    Abstract
    In this research, numerical simulation of the impact of a drop on a flat surface with oblique velocity has been performed, using two-phase model of Lattice Boltzmann Method (conservative phase-field). During impact, it is important to investigate two-dimensional drop dynamics and to evaluate the effectiveness of the numerical method used. The model used here restores conservative phase field and preserves mass both locally and globally. In addition, to calculate the slope of the phase field, it calls the center points without engaging finite difference calculations. This makes it efficient for running parallel computations. A fixed dry and hard surface is considered and the drop impacts it...