Loading...
Search for:
tashi--samaneh
0.091 seconds
A comprehensive 2 Dimensional and 3 Dimensional FEM study of scarf repair for a variety of common composite laminates under in-plane uniaxial and equibiaxial loadings
, Article International Journal of Adhesion and Adhesives ; Volume 114 , 2022 ; 01437496 (ISSN) ; Abedian, A ; Sharif University of Technology
Elsevier Ltd
2022
Abstract
Due to their potential to recover strength and stiffness with a minimum impact on aerodynamic performance of a damaged structure, scarf repairs are boosted as a viable repair option for primary aero-structures. So far, most of the experimental and numerical studies have been limited to joint specimens and their equivalent 2 Dimensional models and a few number of studies attempted to examine the results using real scarf repair geometry. Suggestions previously made to justify the difference between scarf joint and scarf repair strength and possible solution to diminish the difference are challenged in current work. Here, it is tried to investigate the strengths and shortcomings of 2D scarf...
Investigation of Damage and Wearing Mechanism of Aircraft Structural Components
, M.Sc. Thesis Sharif University of Technology ; Abedian, Ali (Supervisor)
Abstract
Damage detection by Piezoelectric Wafer Active Sensors is one of the emerging efficient and dominant Structural Health Monitoring (SHM) methods. These sensors assess the health state of the structure due two strategies: a) near-field damage detection, b) far-field damage detection. The far-field damage detection is based on the high frequency Lamb wave propagation. As wave travels in a damaged structure, phase and amplitude of the wave will be changed. So comparison of the received signal from the pristine structure with damaged structure can give useful information about the health state of the structure. As PWAS is the essential part of this method, simulation and modeling of this sensors...
A FEM Investigation on the Performance Improvement of Design Parameters and Constraints of Scarf Joints For Primary Composite Aero-Structures
, Ph.D. Dissertation Sharif University of Technology ; Abedian, Ali (Supervisor)
Abstract
Due to their potential to recover strength and stiffness with a minimum impact on aerodynamic performance of a damaged structure, scarf repairs are boosted as a viable repair option for primary aero-structures. However, due to the contradictory effect of the scarf angle on satisfying the airworthiness criteria for adhesively repaired structure, including the Design Limit Load and the Design Ultimate Load, certifying an adhesively scarf repair for primary airframes is a sophisticated and in some cases impossible process. So far, most of the experimental and numerical studies have been limited to joint specimens and their equivalent 2 Dimensional models and a few number of studies attempted to...
The sliding frictional contact problem in two dimensional graded materials loaded by a flat stamp
, Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 336-342 ; 10226680 (ISSN) ; 9783037853634 (ISBN) ; Adibnazari, S ; Tashi, S ; Sharif University of Technology
2012
Abstract
In this article, the sliding frictional contact problem for a half-plane which is graded in two dimensions is studied. The effect of medium properties gradient and coefficient of friction in contact mechanics of two dimensional (2D) graded materials which is loaded by a flat stamp have been investigated by developing two Finite Element (FE) models, in macro and micro scales. Discretizing the graded half-plane by quadrants for whose material properties are specified at the centroids by Mori-Tanaka method in both directions has been used to model the 2D FGM in macro scale. In micro scale, the ideal solid quadrant particles which are spatially distributed in a homogeneous matrix used to model...
Improvement of nanosilica effects on the performance of mechanically processed styrene-butadiene rubber by rational hybridization with nanodiamond
, Article Diamond and Related Materials ; Volume 130 , 2022 ; 09259635 (ISSN) ; Shojaei, A ; Khasraghi, Samaneh Salkhi ; Sharif University of Technology
Elsevier Ltd
2022
Abstract
Hybrid nanoparticle comprising of nanosilica (NS) and nanodiamond (ND), denoted by ND@NS, was synthesized by a two-step chemistry route and then incorporated into styrene-butadiene rubber (SBR) at low concentrations up to 5 phr by a two-roll mill. Physical hybrids of NS and ND, i.e., ND&NS, with a weight ratio similar to chemical hybrid (80:20 for NS:ND), were also incorporated into SBR. Field emission scanning electron microscopy observations revealed very fine dispersion of nanoparticles in the case of physical hybrids (ND&NS). In contrast, agglomerations and aggregation of nanoparticles were evidenced for ND@NS. Tensile and dynamic mechanical analyses exhibited a higher reinforcing effect...
An Investigation on the Role of Silica Hybrid Nanoparticles on the Properties of Styrene Butadiene Rubber (SBR)
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor) ; Salkhi Khasraghi, Samaneh (Co-Supervisor)
Abstract
Hybrid nanoparticle comprising of nanosilica (NS) and nanodiamond (ND), as denoted by ND@NS, was synthesized by a two-step chemistry route and then incorporated into styrene-butadiene rubber (SBR) at low concentrations up to 5 phr by a two-roll mill. Physical hybrids of NS and ND, i.e., ND&NS, with a weight ratio similar to chemical hybrid (80:20 for NS:ND), were also incorporated into SBR. Field emission scanning electron microscopy observations revealed very fine dispersion of nanoparticles in the case of physical hybrids (ND&NS); whereas, agglomerations and aggregation of nanoparticles were evidenced for ND@NS. Tensile and dynamic mechanical analyses exhibited a higher reinforcing effect...
Synthesis and Investigation of Properties of Biocompatible Polyurethane Acrylate Based Nanocomposites/Cellulose Nanocrystals
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor) ; Salkhi, Samaneh (Co-Supervisor)
Abstract
Bio-based shape memory polymers with fast-response have high potential for use in medical applications. In this study, biocompatible and biodegradable nanocomposites based on shape memory polyurethane acrylates (SMPUA)/cellulose nanocrystals (CNC), were synthesized by in-situ polymerization. CNC is a natural and renewable nanoparticle that has been considered for medical applications due to its excellent mechanical and biological properties and surface chemistry. At the first phase of this study, in order to synthesize UV-curable shape memory polyurethane acrylate, polycaprolactone diol (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxyethyl methacrylate (HEMA) were used as an reactive...
The Effect of Different Parameters on the Production of High Alumina Cetzp Al2o3 Nano Composite Produced by Aqueous Combustion Synthesis
, M.Sc. Thesis Sharif University of Technology ; Yoozbashizadeh, Hossein (Supervisor) ; Askari, Masoud (Co-Advisor)
Abstract
Combustion synthesis is the best and most effective method for producing ceramic nano-composites which is also a simple and economic way of producing very fine powders with high purity. In this method, a series of combustion reactions named aqueous combustion analysis are used for producing single-phase and nano-composite products ,in which the heat produced in reactions are used for completing the phase . several chemical substances such as glycine ,urea ,ammonium acetate and others are used as combustion agents. In order to obtain optimized nano fuel, we produced alumina powder with multiple combustion percentages and composition of 25%moli ammonium acetate (AA) with 75%moli urea was...
Synthesis and Evaluation of Poly(lactic Acid)/Polyurethane Nano-composites based on Cellulose Nano-particles, with Biomedical Applications
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor) ; Salkhi Khasraghi, Samaneh (Co-Supervisor)
Abstract
Shape memory polymers have the potential to use in the field of biomedical applications. In this research, polyurethane structures have been synthesized based on the Diol mixtures, consisting of polycaprolactane diol (PCL-diol) and poly (lactic acid) diol (PLA-diol). Aim of reasearch is about evaluating poly (lactic acid) effect in structure of the polyurethane. At the same time, cellulose nanocrystals (CNC) have been added to polymer matrix to improve properties. The synthesis of acrylated polyurethane, included the synthesis of polyurethane acrylate prepolymer. Next, this prepolymer has been cured by adding the reactive diluent and some polyol. The cured systems were investigated, finally,...
Synthesis and Investigation of Metal–Organic Framework (MOF) on Properties of Biocompatible Polyurethane Acrylate
, M.Sc. Thesis Sharif University of Technology ; Shojaei Segherlou, Akbar (Supervisor) ; Salkhi Khasraghi, Samaneh (Co-Supervisor)
Abstract
The objective of this research is to evaluate different morphologies of UiO-66 structures (pristine state and UiO-66 structure chemically supported on graphene oxide (UiO-66@GO)), on the rheology of polyurethane acrylate nanocomposites prior to UV-curing. The synthesized nanoparticles were characterized by FTIR, FESEM, TGA, XRD, and BET analysis. Rheological investigations, including large amplitude oscillatory sweep, small amplitude oscillatory sweep, steady shear flow, and thixotropic analysis were utilized. Moreover, the obtained rheological results were fitted using the Carreau–Yasuda model, the power-law model, and the Herschel–Bulkley model for quantitative interpretations. The results...
Investigation the Rule of Carbon-Based Quantum Dot on Biocompatible Polyurethane Acrylate
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor) ; Salkhi Khasraghi, Samaneh (Supervisor)
Abstract
Biocompatible materials play a fundamental role in the advancement of medical science and provide groundbreaking solutions for tissue engineering and various therapeutic applications. Among these materials, polyurethane acrylate has attracted attention due to its biocompatibility, versatility, and suitability for creating complex medical scaffolds. This research investigates an innovative approach to reinforce polyurethane acrylate by incorporating graphene quantum dots, with the aim of developing advanced scaffolds for tissue engineering. The incorporation of graphene quantum dots is designed to take advantage of their exceptional properties to improve the mechanical strength, thermal...
The influence of grain size and grain size distribution on sliding frictional contact in laterally graded materials
, Article Mechatronics and Applied Mechanics, Hong Kong, 27 December 2011 through 28 December 2011 ; Volume 157-158 , 2012 , Pages 964-969 ; 16609336 (ISSN); 9783037853801 (ISBN) ; Adibnazari, S ; Tashi, S ; 2011 International Conference; on Mechatronics and Applied Mechanics, ICMAM2011 ; Sharif University of Technology
2012
Abstract
The sliding frictional contact problem for a laterally graded half-plane has been considered. Two finite element (FE) models, in macro and micro scales have been developed to investigate the effective parameters in contact mechanics of laterally graded materials loaded by flat and triangular rigid stamps. In macro scale model, the laterally graded half-plane is discretized by piecewise homogeneous layers for which the material properties are specified at the centroids by Mori-Tanaka method. In micro scale model, functionally graded material (FGM) structure has been modeled as ideal solid quadrant particles which are spatially distributed in a homogeneous matrix. Boundary conditions and...
The finite element simulation of lamb wave propagation in a cracked structure with coupled filed elements
, Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 618-623 ; 10226680 (ISSN) ; 9783037853634 (ISBN) ; Abedian, A ; Khajehtourian, R ; Singapore Institute of Electronics (SIE); Science and Engineering Institute (SCIEI) ; Sharif University of Technology
2012
Abstract
Crack detection by Piezoelectric Wafer Active Sensors (PWAS) is one of the emerging methods of Non-destructive Evaluation (NDE). These sensors can assess the health state of the structure in far filed through the analyzing the high frequency Lamb wave propagation. As PWAS is the essential part of this method, simulation and modeling of these sensors and their interaction with the host structure, strongly affect the accuracy of results. In this study, unlike the previous works, in which some certain areas of the host structure were considered as a sensor and actuator, the direct simulation of electro-mechanical interaction of the PWAS and the host structure is modeled among modeling the PWAS...
Production and Quality Control of 225Ac-PSMA and Absorbed Dose Estimation of its in Different Human Organs
, M.Sc. Thesis Sharif University of Technology ; Hoseini, Abolfazl (Supervisor) ; Shirvani Arani, Simindokht (Supervisor) ; Zolghadri, Samaneh (Co-Supervisor)
Abstract
Prostate cancer is the second leading cause of cancer-related mortality in men after lung cancer. Prostate-specific membrane antigen (PSMA-617) labeled with Actinium-225 (225Ac) is currently being studied as a potential treatment for metastatic castration-resistant prostate cancer. This study aimed to produce the labeled compound [225Ac]Ac-PSMA-617 for the treatment of prostate cancer and its metastases. The compound was synthesized under optimized labeling conditions, and its radiochemical purity was determined to be over %96 using RTLC chromatography method. The biodistribution of the compound was evaluated in the tissues of healthy male mice, and the injected activity per unit mass of...