Loading...
Search for:
tavakoli-jaghargh--reza
0.154 seconds
Total 2217 records
A Study of The Effect of After School Tutoring on Students' National
University Entrance Exam Performance
,
M.Sc. Thesis
Sharif University of Technology
;
Vesal, Mohammad
(Supervisor)
Abstract
After school tutoring education is a concept that varies widely between countries. Evidence suggests that one of the factors explaining this difference is the existence of competitive tests. There is also evidence for Iran that, because of the existence of competitive test of the national entrance exam, a large percentage of Iranian families use after school tutoring to their children get a successful result in this exam. But the question is how much after school tutoring is effective? The answer to this question is important because if after school tutoring is effective, low-income families are expected to be unable to provide such training, and the national entrance exam will prevent...
Theoretical And Experimental Investigation on The Effect of Sinker Tube Geometry on Hydrodynamic Behavior of The Floating Fish Cage in Waves and Current
, M.Sc. Thesis Sharif University of Technology ; Tabeshpour, Mohamad Reza (Supervisor)
Abstract
This study was conducted to investigate a theoretical and experimental two-dimensional model of a floating fish cage in regular waves and uniform current. Due to the inefficiency of computational fluid dynamics (CFD) in solving such problems, developing a simple model to predict the results is highly advantageous. In this study, a simple mass-spring model was developed to simulate the problem. After validating the results of this simple model through a series of model tests in a wave tank, it was further utilized to extract additional results. Experiments were conducted at six different wave heights and four current velocities. In all experiments, wave steepness was maintained at a ratio of...
Effect of co Addition on Magnetic Properties of Nanocrystalline FINEMET Alloy
,
M.Sc. Thesis
Sharif University of Technology
;
Maddah Hosseini, Hamid Reza
(Supervisor)
Abstract
In this work, the effect of chemical composition on structural, mechanical, electrical and magnetic properties of nanocrystalline Finemet-type alloys with the composition of Fe73.5Si13.5B9Nb3Cu1 , Fe77Si11B9Nb2.4Cu0.6 and (〖Fe_0.5 Co_0.5)〗_77 Si_11 B_9 Nb_2.4 Cu_(0.6 )was investigated. The samples were prepared by vacuum arc melting of high purity constitution in order to obtain a nanocrystalline structure. The amorphous ribbons were then annealed under vacuum with the same conditions of temperatures and time to compare their properties. The structural and thermal properties of the samples were analyzed using various techniques such as X-ray Diffraction (XRD) and Differential Scanning...
Energy Management through Topology Optimization of Microstructure of Tow Phase Functionally Graded Materials (FGMs) under Dynamic Loading
, M.Sc. Thesis Sharif University of Technology ; Bagheri, Reza (Supervisor) ; Tavakoli, Rouhollah (Co-Advisor)
Abstract
A numerical algorithm is proposed to design microstructure of a two-phase functionally graded material under dynamic loading. In order to direct energy propagation through the desired regions in the domain, we introduced a regularized Heaviside function, H(x), in our objective functional, namely the time-averaged sum of the elastic strain energy and the kinetic energy. Real-life systems are however, not undamped, but possess some kind of energy dissipation mechanism or damping. In order to apply modal analysis of undamped systems to damped systems, we use Rayleigh damping model in our formulations. To generate a well-posed topology optimization, we used homogenization via a solid isotropic...
Investigating the Microstructure, Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Li-Zn Alloys
, M.Sc. Thesis Sharif University of Technology ; Alizadeh, Reza (Supervisor) ; Tavakoli, Rouhollah (Co-Supervisor)
Abstract
Due to its biodegradability, magnesium can be a good option for making degradable medical implants that disappear in the body over time and thus there would be no need for secondary surgery. However, high rate of corrosion of magnesium in the body environment and low formability at room temperature are the two main problems of magnesium, which lead to rapid destruction of the sample in a short time and serious problems. For these reasons, much research is currently being done to improve the corrosion behavior and mechanical properties of magnesium alloys through microstructure modification. In this regard, special attention has been paid to Mg-Li alloys as the lightest magnesium alloys. The...
Modeling and Solving the Vehicle Routing Problem with Robots and Delivery Options
, M.Sc. Thesis Sharif University of Technology ; Akbari Jokar, Mohammad Reza (Supervisor)
Abstract
In the past decade, with the expansion of e-commerce, there has been an unprecedented growth in demand for online retailing. Due to this growth, fast, efficient, and flawless delivery of shipments to final customers has become especially important. On the other hand, the expansion of urbanization and the increase in urban traffic have also created obstacles to efficient delivery. These factors have introduced new challenges for logistics service provider companies. Several innovations have been proposed in recent years to address these problems. Delivery of goods to locations such as the trunk-in-car or shared delivery locations like lockers is one of the key innovations in solving logistics...
Fabrication of Janus Micromotors Based on Black Titanium Dioxide for Medical Application
, M.Sc. Thesis Sharif University of Technology ; Madaah Hosseini, Hamid Reza (Supervisor) ; Tavakoli, Rohollah (Co-Supervisor)
Abstract
Enzyme-powered motors self-propel through the catalysis of biofuels, which makes them excellent candidates for biomedical applications. However, fundamental issues such as their movement in biological fluids and understanding the mechanism of propulsion are important aspects that must be considered before application in biomedicine. Building active systems based on biocompatible materials that use non-toxic fuels to power their vehicles have always been challenging. In this study, self-propelled micromotors consist of titanium dioxide black spheres asymmetrically coated with a thin layer of gold. Cysteine was used to bind urease enzyme due to thiol binding. By biocatalytically converting...
Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices
, Article Journal of Physical Chemistry C ; Volume 121, Issue 18 , 2017 , Pages 9757-9765 ; 19327447 (ISSN) ; Simchi, A ; Tavakoli, R ; Fan, Z ; Sharif University of Technology
American Chemical Society
2017
Abstract
This paper presents solid-state ligand exchange of spin-coated colloidal lead sulfide quantum dot (PbS QD) films by methylammonium iodide (MAI) and integration of them in depleted heterojunction solar (DHS) devices having an antireflecting (AR) nanocone plastic structure. Time-resolved photoluminescence measurements determine a shorter lifetime of the charge carries on a semiconductor (TiO2) electron transfer layer for the MAI-passivated QD films as compared with those with long-chain aliphatic or short thiol ligands. Consequently, the DHS device yields improved power conversion efficiency (>125%) relative to oleic-acid-passivated PbS QD films. Using anodized aluminum oxide templates, an...
Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability
, Article Advanced Energy Materials ; Volume 8, Issue 23 , 2018 ; 16146832 (ISSN) ; Yadav, P ; Tavakoli, R ; Kong, J ; Sharif University of Technology
Wiley-VCH Verlag
2018
Abstract
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device....
Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing.Efficient, hysteresis-free, and flexible inverted perovskite solar cells using all-vacuum processing
, Article Solar RRL ; 2020 ; Yadav, P ; Prochowicz, D ; Tavakoli, R ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
The fabrication of efficient perovskite solar cells (PSCs) using all-vacuum processing is still challenging due to the limitations in the vacuum deposition of the hole transporting layer (HTL). Herein, inverted PSCs using copper (II) phthalocyanine (CuPC) as an ideal alternative HTL for vacuum processing are fabricated. After proper optimization, a PSC with a power conversion efficiency (PCE) of 20.3% is achieved, which is much better than the PCEs (16.8%) of devices with solution-based CuPC. As it takes a long time to dissolve CuPC in the solution-based device, the evaporation approach has better advantage in terms of fast processing. In addition, the device with the evaporated CuPC HTL...
Efficient perovskite solar cells based on Cdse/Zns quantum dots electron transporting layer with superior UV stability
, Article Physica Status Solidi - Rapid Research Letters ; Volume 14, Issue 6 , 2020 ; Prochowicz, D ; Yadav, P ; Tavakoli, R ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
Stability is the main challenge in the field of perovskite solar cells (PSCs). Finding new strategies is required to protect the PSCs from deteriorating agents such as humidity, heating, and illumination. Herein, a new electron transporting layer (ETL), i.e., CdSe/ZnS quantum dots (QDs), is proposed for the fabrication of efficient and stable PSCs. CdSe/ZnS QDs layer not only works as an ETL but also has downshifting property, which can improve both efficiency and stability of the PSCs. Using CdSe/ZnS QDs ETL with green emission, a PSC with maximum power conversion efficiency (PCE) of 18% is achieved. More importantly, the device shows great UV stability, much better than the device with...
Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method
, Article Computer Methods in Applied Mechanics and Engineering ; Vol. 276 , 2014 , pp. 534-565 ; ISSN: 00457825 ; Sharif University of Technology
2014
Abstract
A new computational algorithm is introduced in the present study to solve multimaterial topology optimization problems. It is based on the penalization of the objective functional by the multiphase volume constrained Ginzburg-Landau energy functional. The update procedure is based on the gradient flow of the objective functional by a fractional step projected steepest descent method. In the first step, the new design is found based on the projected steepest descent method to ensure the reduction in the objective functional, simultaneously satisfying the control constraints. In the second step, regularization step, an H1 regularity of the solution is ensured while keeping the feasibility of...
On the prediction of shrinkage defects by thermal criterion functions
, Article International Journal of Advanced Manufacturing Technology ; Vol. 74, issue. 1-4 , Jun , 2014 , p. 569-579 ; Sharif University of Technology
2014
Abstract
The goal of the present study is to predict the formation of solidification induced defects in castings by thermal criteria functions. In a criterion function method, the heat transfer equation is firstly solved, and then the susceptibility of defect formation at every point in the casting is predicted by computing a local function, criterion function, using results of the thermal analysis. In the first part of the paper, some famous criteria functions, in particular, the Pellini and Niyama criteria, are analyzed and their shortcomings are discussed in details. Then, a new criterion function is suggested to decrease the shape-dependency issue of the former criteria. The feasibility of the...
Computationally efficient approach for the minimization of volume constrained vector-valued Ginzburg-Landau energy functional
, Article Journal of Computational Physics ; Volume 295 , August , 2015 , Pages 355-378 ; 00219991 (ISSN) ; Sharif University of Technology
Academic Press Inc
2015
Abstract
The minimization of volume constrained vector-valued Ginzburg-Landau energy functional is considered in the present study. It has many applications in computational science and engineering, like the conservative phase separation in multiphase systems (such as the spinodal decomposition), phase coarsening in multiphase systems, color image segmentation and optimal space partitioning. A computationally efficient algorithm is presented to solve the space discretized form of the original optimization problem. The algorithm is based on the constrained nonmonotone L2 gradient flow of Ginzburg-Landau functional followed by a regularization step, which is resulted from the Tikhonov regularization...
Unconditionally energy stable time stepping scheme for Cahn-Morral equation: Application to multi-component spinodal decomposition and optimal space tiling
, Article Journal of Computational Physics ; Volume 304 , 2016 , Pages 441-464 ; 00219991 (ISSN) ; Sharif University of Technology
Academic Press Inc
2016
Abstract
An unconditionally energy stable time stepping scheme is introduced to solve Cahn-Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments...
Optimal design of multiphase composites under elastodynamic loading
, Article Computer Methods in Applied Mechanics and Engineering ; Volume 300 , 2016 , Pages 265-293 ; 00457825 (ISSN) ; Sharif University of Technology
Elsevier
2016
Abstract
An algorithm is proposed to optimize the performance of multiphase structures (composites) under elastodynamic loading conditions. The goal is to determine the distribution of material in the structure such that the time-averaged total stored energy of structure is minimized. A penalization strategy is suggested to avoid the checkerboard instability, simultaneously to generate near 0-1 topologies. As a result of this strategy, the solutions of presented algorithm are sufficiently smooth and possess the regularity of H1 function space. A simple method for the continuum adjoint sensitivity analysis of the corresponding PDE-constrained optimization problem is presented. It is general and can be...
On the coupled continuous knapsack problems: projection onto the volume constrained Gibbs N-simplex
, Article Optimization Letters ; Volume 10, Issue 1 , 2016 , Pages 137-158 ; 18624472 (ISSN) ; Sharif University of Technology
Springer Verlag
2016
Abstract
Coupled continuous quadratic knapsack problems (CCK) are introduced in the present study. The solution of a CCK problem is equivalent to the projection of an arbitrary point onto the volume constrained Gibbs N-simplex, which has a wide range of applications in computational science and engineering. Three algorithms have been developed in the present study to solve large scale CCK problems. According to the numerical experiments of this study, the computational costs of presented algorithms scale linearly with the problem size, when it is sufficiently large. Moreover, they show competitive or even superior computational performance compared to the advanced QP solvers. The ease of...
Thermal optimization of the continuous casting process using distributed parameter identification approach—controlling the curvature of solid-liquid interface
, Article International Journal of Advanced Manufacturing Technology ; Volume 94, Issue 1-4 , 2018 , Pages 1101-1118 ; 02683768 (ISSN) ; Sharif University of Technology
Springer London
2018
Abstract
Thermal optimization of the vertical continuous casting process is considered in the present study. The goal is to find the optimal distribution of the temperature and interfacial heat transfer coefficients corresponding to the primary and secondary cooling systems, in addition to the pulling speed, such that the solidification along the main axis of strand approaches to the unidirectional solidification mode. Unlike many thermal optimization of phase change problems in which the desirable (target) temperature, temperature gradient, or interface position are assumed to be a priori known, a desirable shape feature of the freezing interface (not its explicit position) is assumed to be known in...
Smooth modeling of solidification based on the latent heat evolution approach
, Article International Journal of Advanced Manufacturing Technology ; Volume 88, Issue 9-12 , 2017 , Pages 3041-3052 ; 02683768 (ISSN) ; Sharif University of Technology
Springer London
2017
Abstract
The regularity problem of heat conduction equation corresponding to modeling of solidification based on the latent heat evolution approach is considered in the present study. It is shown that the corresponding PDE is actually semi-smooth, an issue that has not been taken into account explicitly in the related literature. A general smoothing (regularization) strategy is introduced to solve this problem. More specifically, the smoothed version of the effective heat capacity method is presented in this work. The presented approach is applied to model the quasi steady-state heat transfer problem in the continuous casting process. Numerical experiments demonstrate the success of the presented...
CartGen: Robust, efficient and easy to implement uniform/octree/embedded boundary Cartesian grid generator
, Article International Journal for Numerical Methods in Fluids ; Volume 57, Issue 12 , 30 August , 2008 , Pages 1753-1770 ; 02712091 (ISSN) ; Sharif University of Technology
2008
Abstract
An efficient and easy to implement method to generate Cartesian grids is presented. The presented method generates various kinds of Cartesian grids such as uniform, octree and embedded boundary grids. It supports the variation of grid size along each spatial direction as well as anisotropic and non-graded refinements. The efficiency and ease of implementation are the main benefits of the presented method in contrast to the alternative methods. Regarding octree grid generation, applying a simple and efficient data compression method permits to store all grid levels without considerable memory overhead. The presented method generates octree grids up to a 13-level refinement (81923 grids on the...