Loading...
Search for: vafai--a
0.136 seconds

    Explicit dynamics X-FEM simulation of heterogeneous materials

    , Article Finite Elements in Analysis and Design ; Volume 56 , 2012 , Pages 52-79 ; 0168874X (ISSN) Shahbeyk, S ; Yaghoobi, M ; Vafai, A ; Sharif University of Technology
    2012
    Abstract
    An explicit dynamics extended finite element method (X-FEM) is applied to the problems with material interfaces. To this end, the available X-FEM element mass matrix lumping techniques have been identified and assessed. It is shown that all the methods have their own limitations and are not general enough to handle the enrichment functions specifically developed for the elements with material interfaces. Hence, a general element mass matrix lumping technique has been introduced which exactly preserves the kinetic energies of the basic rigid body and enrichment modes. The idea is borrowed from the previously published method for a specific range of enrichment functions and extended to... 

    Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls

    , Article Engineering Structures ; Volume 48 , March , 2013 , Pages 750-762 ; 01410296 (ISSN) Emami, F ; Mofid, M ; Vafai, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents the research works on the cyclic behavior of trapezoidally corrugated as well as unstiffened steel shear walls. A series of experimental studies were carried out on the half-scale, one-story, single-bay steel shear walls with unstiffened and trapezoidally corrugated panels. This experimental study was conducted to compare the stiffness, strength, ductility ratio and energy dissipation capacity of three different steel shear walls: unstiffened, trapezoidally vertical corrugated and trapezoidally horizontal corrugated. Gravity loads were not applied at the top of the walls and horizontal load was applied at the top of each specimen. Loading sequence was applied as... 

    Lattice heat capacity of mesoscopic nanostructures

    , Article Journal of Physics: Conference Series, 5 July 2010 through 10 July 2010, Dubna ; Volume 248 , 2010 ; 17426588 (ISSN) Gharekhanlou, B ; Khorasani, S ; Vafai, A ; Sharif University of Technology
    2010
    Abstract
    We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes  

    Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes

    , Article Scientia Iranica ; Volume 16, Issue 2 A , 2009 , Pages 147-155 ; 10263098 (ISSN) Arjomandi, K ; Estekanchi, H ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    Various damage indexes have been introduced in recent years incorporating different parameters for estimating structural damage. Amongst these indexes, Plastic Ductility and Drift have been the center of attention of standards and building codes, like FEMA-356, because of their straightforward physical interpretation and ease of calculation. In this paper, several steel moment frames have been considered and their responses have been evaluated under a set of scaled earthquakes. A group of various damage indexes, which included cumulative and non cumulative, cyclic fatigue based, deformation based and modal parameter based, has been considered and the damage to structures has been evaluated... 

    Investigation of critical influential speed for moving mass problems on beams

    , Article Applied Mathematical Modelling ; Volume 33, Issue 10 , 2009 , Pages 3885-3895 ; 0307904X (ISSN) Dehestani, M ; Mofid, M ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    A traveling mass due to its mass inertia has significant effects on the dynamic response of the structures. According to recent developments in structural materials and constructional technologies, the structures are likely to be affected by sudden changes of masses and substructure elements, in which the inertia effect of a moving mass is not negligible. The transverse inertia effects have been a topic of interest in bridge dynamics, design of railway tracks, guide way systems and other engineering applications such as modern high-speed precision machinery process. In this study an analytical-numerical method is presented which can be used to determine the dynamic response of beams carrying... 

    Numerical modelling of dynamically loaded metal foam-filled square columns

    , Article International Journal of Impact Engineering ; Volume 34, Issue 3 , 2007 , Pages 573-586 ; 0734743X (ISSN) Shahbeyk, S ; Petrinic, N ; Vafai, A ; Sharif University of Technology
    2007
    Abstract
    The crushing behaviour of dynamically loaded metal foam-filled square columns has been investigated using an extended version of the existing self-similar pressure dependent constitutive model for metal foams. The model has been implemented in ABAQUS/Explicit and analyses have been conducted using different approaches to model the uniaxial and hydrostatic hardening behaviour of metal foams. A practical and reliable procedure to approximate the observed anisotropic behaviour within the computational framework of isotropic plasticity is introduced. The comparison between the available experimental and newly generated numerical results is presented in order to illustrate the accuracy and... 

    Modeling crack in orthotropic media using a coupled finite element and partition of unity methods

    , Article Finite Elements in Analysis and Design ; Volume 42, Issue 13 , 2006 , Pages 1165-1175 ; 0168874X (ISSN) Asadpoure, A ; Mohammadi, S ; Vafai, A ; Sharif University of Technology
    2006
    Abstract
    The problem of crack modeling in 2D orthotropic media is considered. The extended finite element method has been adopted for modeling and analyzing a crack and its domain numerically. In this method, first the finite element model without any discontinuities is created and then the two-dimensional asymptotic crack-tip displacement fields with a discontinuous function are added to enrich the finite element approximation using the framework of partition of unity. The main advantage is the ability of the method in taking into consideration a crack without any explicit meshing of the crack surfaces, and the growth of crack can readily be applied without any remeshing. Mixed-mode stress intensity... 

    Crack analysis in orthotropic media using the extended finite element method

    , Article Thin-Walled Structures ; Volume 44, Issue 9 , 2006 , Pages 1031-1038 ; 02638231 (ISSN) Asadpoure, A ; Mohammadi, S ; Vafai, A ; Sharif University of Technology
    2006
    Abstract
    An extended finite element method has been proposed for modeling crack in orthotropic media. To achieve this aim a discontinuous function and two-dimensional asymptotic crack-tip displacement fields are used in a classical finite element approximation enriched with the framework of partition of unity. It allows modeling crack by standard finite element method without explicitly defining and re-meshing of surfaces of the crack. In this study, fracture properties of the models are defined by the mixed-mode stress intensity factors (SIFs), which are obtained by means of the domain form of the interaction integral (M-integral). Numerical simulations are performed to verify the approach, and the... 

    United elements method for general contact-impact problems

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 191, Issue 8-10 , 2001 , Pages 843-860 ; 00457825 (ISSN) Farahani, K ; Mofid, M ; Vafai, A ; Sharif University of Technology
    2001
    Abstract
    This work presents the details of a finite element-based numerical method to analyse general contact/impact problems, called united elements method (UEM). In contrast to usual methods, that is Lagrange Multipliers and Penalty Function, this method is conceptual, suitable for computer programming, and free from inherent deficiencies of those methods. The key points of this procedure are elimination of the normal degree of freedom of the contactor node from the system energy potential functional in terms of target surface motion, and proper calculation of target element unbalanced forces, to incorporate the contact constraints. After a review on classic formulations, the mathematical and... 

    A modified approach to determine the energy dissipation capacity of the basic folding mechanism

    , Article Thin-Walled Structures ; Volume 41, Issue 9 , 2003 , Pages 835-848 ; 02638231 (ISSN) Vafai, A ; Shahbeyk, S ; Kamalan, A ; Sharif University of Technology
    2003
    Abstract
    In this paper, new assumptions are made to determine the energy dissipation capacity of the basic folding mechanism. The basic folding mechanism, introduced by Wierzbicki and Abramowiciz is an intelligent mathematical imitation of the real crumpling process for simple structural sections. A contribution factor for some part of energy absorption and the new concept of varying rolling radios, based on minimizing instantaneously applied load, are utilized to enrich the old analytical solution. A set of finite element analyses on the axial collapse of square boxcolumns with various cross sections and width to thickness ratios, has been performed to verify the proposed analytical solution vs. the... 

    Extended finite element method in an orthotropic cracked medium

    , Article 8th International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS VIII, Barcelona, 5 September 2005 through 7 September 2005 ; Issue PART 2 , 2005 , Pages 1110-1113 ; 849599979X (ISBN); 9788495999795 (ISBN) Asadpoure, A ; Mohammadi, S ; Vafai, A ; Sharif University of Technology
    2005

    A parametric study of seismic response in anchored steel tanks with endurance time method

    , Article Scientia Iranica ; Vol. 21, Issue. 5 , 2014 , pp. 1608-1619 ; ISSN: 10263098 Vaezi, D ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2014
    Abstract
    In this paper, the seismic response of anchored cylindrical steel tanks with various dimensional parameters has been investigated by endurance time method considering fluid-structure interaction effects. Various response quantities, such as stresses and displacements, have been evaluated by subjecting tanks to specially designed intensifying accelerograms and their performance is judged based on their response at predefined level(s) of dynamic excitation. It is shown that ET analysis can reliably predict the result of ground motion time history analysis in all seven tank models studied. In four of the tanks in which height of the shell and the level of fluid is the same, the variation of... 

    Improved methodology for endurance time analysis: From time to seismic hazard return period

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1180-1187 ; 10263098 (ISSN) Mirzaee, A ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2012
    Abstract
    In the Endurance Time (ET) method, structures are subjected to a calibrated intensifying accelerogram and their performance is assessed based on their response at various equivalent intensity levels. Application of the ET method in performance-based design of structures has been studied by introducing a continuous performance target curve, which expresses the limit of the proper seismic performance of a structure along various times of the ET accelerogram. The correlation between time in the ET method and the return period for different structural periods is investigated. The procedure is based on the coincidence of response spectra obtained from the ET accelerogram at different times and... 

    Application of endurance time method in performance-based design of steel moment frames

    , Article Scientia Iranica ; Volume 17, Issue 6 A , 2010 , Pages 482-492 ; 10263098 (ISSN) Mirzaee, A ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2010
    Abstract
    In this paper, application of the Endurance Time (ET) method in the performance-based design of steel moment frames is explained from a conceptual viewpoint. ET is a new dynamic pushover procedure that predicts the seismic performance of structures by subjecting them to a gradually intensifying dynamic action and monitoring their performance at various excitation levels. Structural responses at different excitation levels are obtained in a single time-history analysis, thus significantly reducing the computational demand. Results from three analyses are averaged to reduce the random scattering of the results at each time step. A target performance curve is presented based on the required... 

    Characteristics of second generation endurance time acceleration functions

    , Article Scientia Iranica ; Volume 17, Issue 1 A , 2010 , Pages 53-61 ; 10263098 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    2010
    Abstract
    The Endurance Time (ET) method is a time-history based dynamic pushover procedure in which structures are subjected to specially designed, intensifying accelerograms, and their seismic performance is judged based on the time duration needed to satisfy the required design objective. Second generation refers to ET acceleration functions that are generated by application of optimization techniques in order to produce response spectra compliant linearly intensifying accelerograms. In this paper, the major characteristics of a set of second generation ET acceleration functions (ETA20a01-3) are investigated. The template response spectra of this set of ET acceleration functions corresponds to the... 

    A methodology for value based seismic design of structures by the endurance time method

    , Article Scientia Iranica ; Volume 23, Issue 6 , 2016 , Pages 2514-2527 ; 10263098 (ISSN) Basim, M ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    A new design methodology based on the total value of structures is introduced. This methodology, namely Value Based Design of structures (VBD), uses the advantages of Endurance Time (ET) method. While prescriptive and earlier generations of performance based design approaches commonly try to find structures with the least initial cost, a design approach to directly incorporate the concept of value in design procedure has been formulated here. Reduced computational effort in ET analysis provides the prerequisites to practical use of optimization algorithms in seismic design. A genetic algorithm is used with the objective of minimizing total cost of the building during its lifespan. ET method... 

    Estimating structural damage of steel moment frames by Endurance Time method

    , Article Journal of Constructional Steel Research ; Volume 64, Issue 2 , 2008 , Pages 145-155 ; 0143974X (ISSN) Estekanchi, H. E ; Arjomandi, K ; Vafai, A ; Sharif University of Technology
    2008
    Abstract
    In Endurance Time (ET) method, structures are subjected to gradually intensifying accelerograms and their performance is judged based on the maximum time duration in which they can satisfy the predefined endurance criteria. Damage indexes are used in ET method as the endurance criteria. In this paper, correlation between the values of various damage indexes as obtained from nonlinear time-history analysis of steel moment frames subjected to scaled earthquakes are compared with those from ET method at the same level of spectral acceleration. It is shown that the average value of various damage indexes can be estimated from ET analysis results. Advantages, accuracy and limitations of this... 

    Application of endurance time method in seismic analysis of bridges

    , Article Scientia Iranica ; Volume 27, Issue 4A , 2021 , Pages 1751-1761 ; 10263098 (ISSN) Ghaffari, E ; Estekanchi, H. E ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    In this paper, the application of Endurance Time (ET) method to the seismic analysis of bridges is elaborated. ET method is a novel seismic analysis method based on time history analysis in which a structure is subjected to a predefined intensifying acceleration function. First, six concrete bridges were modeled in this study. Three Endurance Time Acceleration Functions (ETAFs) were applied to the models, and the average of responses was calculated. Next, the time history analysis was conducted using seven real accelerograms that are scaled using the method recommended by Federal Highway Administration (FHWA) to be compatible with the design spectrum of American Association of State Highway... 

    Application of Endurance Time method in linear seismic analysis

    , Article Engineering Structures ; Volume 29, Issue 10 , 2007 , Pages 2551-2562 ; 01410296 (ISSN) Estekanchi, H. E ; Valamanesh, V ; Vafai, A ; Sharif University of Technology
    2007
    Abstract
    The Endurance Time (ET) method is a time-history based dynamic pushover procedure for seismic analysis and design of structures. In this procedure, structures are subjected to a specially designed intensifying accelerogram and their Endurance Time is measured based on the time interval during which they can resist the imposed dynamic actions. In this paper, application of the ET method in linear seismic analysis of structures has been investigated. The procedure for generating code compliant uniformly intensifying ET accelerograms has been explained. A set of three such accelerograms have been applied to various moment and braced steel frames and the results of analysis are compared to... 

    Far-field dynamic behavior of a half-space under an inertial strip foundation subjected to a time-harmonic force

    , Article Latin American Journal of Solids and Structures ; Volume 10, Issue 3 , 2013 , Pages 453-471 ; 16797817 (ISSN) Dehestani, M ; Malidarreh, N. R ; Choobbasti, A. J ; Vafai, A ; Sharif University of Technology
    2013
    Abstract
    Recent research works demonstrated that the interaction between the loads and the carrying structure's boundary which is related to the inertia of the load is an influential factor on the dynamic response of the structure. Although effects of the inertia in moving loads were considered in many works, very few papers can be found on the inertial effects of the stationary loads on structures. In this paper, an elastodynamic formulation was employed to investigate the dynamic response of a homogeneous isotropic elastic half-space under an inertial strip foundation subjected to a time-harmonic force. Fourier integral transformation was used to solve the system of Poisson-type partial...