Loading...
Search for: vahdati-khajeh--s
0.228 seconds

    A fast flux search controller for DTC-based induction motor drives

    , Article IEEE Transactions on Industrial Electronics ; Volume 54, Issue 5 , 2007 , Pages 2407-2416 ; 02780046 (ISSN) Kaboli, S ; Zolghadri, M. R ; Vahdati Khajeh, E ; Sharif University of Technology
    2007
    Abstract
    In this paper, a flux search controller is proposed to increase the efficiency of a direct torque-controlled induction motor in full load range. The value of the flux reference is determined through a minimization algorithm. The amplitude of stator current is used as the objective function since it is shown that samples of the stator current have better statistical properties than input power. In addition, the stator current has more sensitivity to the flux variation than input power. These two properties allow implementing an adaptive algorithm to determine the proper flux step without waste of time. The minimum allowable value of the flux step has been determined based on this process to... 

    Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution

    , Article Surfaces and Interfaces ; Volume 15 , 2019 , Pages 157-165 ; 24680230 (ISSN) Vahdati Khajeh, S ; Zirak, M ; Zooghi Tejrag, R ; Fathi, A ; Lamei, K ; Eftekhari Sis, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present work, N-rich activated carbon was synthesized using hydrothermal carbonization of egg white biomass in the presence of sucrose, followed by chemical activation and magnetization of hydrochar in the presence of iron (II) and (III) at NaOH solution. The results showed that the sucrose has a critical role in hydrochar yield by increasing of sucrose content. This claim also proved by SEM analysis, which hydrochar morphology was changed from the layered to fused carbon spheres morphology that confirmed the increasing of nucleation site. The materials were characterized with VSM, SEM, CHN, FTIR, Raman spectroscopy and XRD techniques. Capacity of prepared magnetic activated carbon... 

    Effect of Cu2+ ion on biological performance of nanostructured uorapatite doped with copper

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 2845-2855 ; 10263098 (ISSN) Nikonam Mofrad, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    2017
    Abstract
    Nanostructured copper-doped uorapatite (Cux.Ca(10X).(PO4)6.F2) having crystallite sizes of 19, 29, and 34 nm at x = 0:9, 0.4, and 0.0, respectively, was synthesized by planetary ball milling of CaO, P2O5, CaF2, and CuO powders. Specifications of the products were determined by Fourier-transform infrared spectroscopy, eld emission scanning electron microscopy, transmission electron microscopy, and X-ray di raction analyses. In-vitro studies and Mossman's Tetrazole Test (MTT) assays were also conducted by incubating Cux.Ca(10X).(PO6).F2 powder into Kokubo's Simulated Body Fluid (SBF) and against BT-20 cell, respectively, to determine bioactivity and biocompatibility of the materials.... 

    Mechanism of nanostructured fluorapatite formation from CaO, CaF2 and P2O5 precursors by mechanochemical synthesis

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 43, Issue 3-4 , 2018 , Pages 201-210 ; 14686783 (ISSN) Nikonam Mofrad,, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Science Reviews 2000 Ltd  2018
    Abstract
    We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF2 and P2O5 by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H3PO4, Ca(OH)2, Ca2P2O7 and CaCO3 as the intermediate compounds. At early stages of the milling, conversions of P2O5 to H3PO4 and CaO to Ca(OH)2 occurred in the wet atmosphere. Later, a combination of Ca(OH)2 and H3PO4 formed Ca2P2O7 while the unreacted CaO was converted to... 

    Modeling and model transformation as a service: towards an agile approach to model-driven development

    , Article 6th International Conference on Lean and Agile Software Development, LASD 2022, 22 January 2022 through 22 January 2022 ; Volume 438 LNBIP , 2022 , Pages 116-135 ; 18651348 (ISSN); 9783030942373 (ISBN) Vahdati, A ; Ramsin, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Scalability has always been a challenge in software development, and agile methods have faced their own ordeal in this regard. The classic solution is to use modeling to manage the complexities of the system while facilitating intra-team and inter-team communication; however, agile methods tend to shy away from modeling to avoid its adverse effect on productivity. Model-driven development (MDD) has shown great potential for automatic code generation, thereby enhancing productivity, but the agile community seems unconvinced that this gain in productivity justifies the extra effort required for modeling. The challenge that the MDD community faces today is to incorporate MDD in agile... 

    Modeling of permeability with the aid of 3D interdendritic flow simulation for equiaxed dendritic structures

    , Article Materials Science and Engineering A ; Volume 475, Issue 1-2 , 2008 , Pages 355-364 ; 09215093 (ISSN) Khajeh, E ; Mirbagheri, S. M. H ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    In this study, the permeability for interdendritic liquid flow through equiaxial mushy zone has been modeled and experimentally measured. In the present work, by applying a virtual dendrite in a micro-domain and solving Navier-Stokes equation, flow pattern around the dendrite has been obtained and then by applying Darcy's law to this 3D domain the permeability has been determined. In this micro-model the influence of solid fraction and geometry of dendrites have been assessed. Numerically determined values of permeabilities have been analyzed by the use of SPSS statistical software. Then an experimental method is used to measure the permeability for flow through equiaxial mushy zone of Pb-Sn... 

    Efficient deep eutectic solvents catalyzed synthesis of pyran and benzopyran derivatives

    , Article Journal of Molecular Liquids ; Volume 186 , 2013 , Pages 76-80 ; 01677322 (ISSN) Azizi, N ; Dezfooli, S ; Khajeh, M ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    An ecofriendly one-pot multicomponent reaction of 1,3-dicarbonyl compounds, aldehydes, and malononitrile was carried out in a different deep eutectic solvent (DES) based on choline chloride, to synthesize highly functionalized benzopyran and pyran derivatives under catalyst-free conditions. The results showed that urea:choline chloride based DES is the best solvent and is successfully applicable to a wide range of aldehydes, active methylene compounds with high yields (75-95%) and short reaction times (1-4 h)  

    As, Sb, and Fe removal from industrial copper electrolyte by solvent displacement crystallisation technique

    , Article Canadian Metallurgical Quarterly ; 2018 ; 00084433 (ISSN) Shabani, A ; Hoseinpur, A ; Yoozbashizadeh, H ; Vahdati Khaki, J ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The presence of impurities in the copper electrolyte increases the energy consumption of an electrorefining process and contaminates the deposited copper on cathode. The concentration of impurities increases over time making it necessary to remove them from the solution. This research introduces a fast, effective, and simple method to refine the industrial electrolyte from arsenic, iron and antimony by solvent displacement crystallisation technique. In this method, when alcohol is added to the electrolyte, the impurities precipitate from the solution as amorphous arsenato antimonite phase. Results show that Fe, Sb, and As are removed from the copper electrolyte by 75.2, 96.9 and 99.8%,... 

    As, Sb, and Fe removal from industrial copper electrolyte by solvent displacement crystallisation technique

    , Article Canadian Metallurgical Quarterly ; Volume 58, Issue 3 , 2019 , Pages 253-261 ; 00084433 (ISSN) Shabani, A ; Hoseinpur, A ; Yoozbashizadeh, H ; Vahdati Khaki, J ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    The presence of impurities in the copper electrolyte increases the energy consumption of an electrorefining process and contaminates the deposited copper on cathode. The concentration of impurities increases over time making it necessary to remove them from the solution. This research introduces a fast, effective, and simple method to refine the industrial electrolyte from arsenic, iron and antimony by solvent displacement crystallisation technique. In this method, when alcohol is added to the electrolyte, the impurities precipitate from the solution as amorphous arsenato antimonite phase. Results show that Fe, Sb, and As are removed from the copper electrolyte by 75.2, 96.9 and 99.8%,... 

    Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

    , Article Petroleum Science and Technology ; Volume 36, Issue 19 , 2018 , Pages 1582-1588 ; 10916466 (ISSN) Chen, M ; Sasanipour, J ; Kiaian Mousavy, S. A ; Khajeh, E ; Kamyab, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (Rv), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model’s great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model. © 2018, © 2018 Taylor & Francis... 

    Effect of EPS beads in lightening a typical zeolite and cement-treated sand

    , Article Bulletin of Engineering Geology and the Environment ; Volume 80, Issue 11 , 2021 , Pages 8615-8632 ; 14359529 (ISSN) Khajeh, A ; Ebrahimi, S. A ; MolaAbasi, H ; Jamshidi Chenari, R ; Payan, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The current study aims to assess the influence of EPS beads inclusion on the strength properties of stabilized poorly-graded sands. Various contents of zeolite and cement as stabilizing agents, with the total amounts of 4, 8, and 12% by dry soil weight, and also 0, 0.25, and 0.5% weight ratios of EPS beads (η) are examined. Zeolite is opted among a variety of pozzolanic materials so as to replace a part of cement (0, 10, 30, 50, 70, and 90%) due to its superior environmentally friendly properties. The stress–strain behavior, unconfined compressive strength (UCS), peak strain energy (Eu), and California bearing capacity (CBR) of the zeolite and cement-treated sand-EPS beads mixtures are... 

    Blood plasma separation and transfer on a centrifugal microfluidic disk: Numerical analysis and experimental study

    , Article 2023 30th National and 8th International Iranian Conference on Biomedical Engineering, ICBME 2023 ; 2023 , Pages 20-26 ; 979-835035973-2 (ISBN) Khajeh, M. M ; Saadatmand, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    Lab-On-A-Disk, as a subfield of microfluidic systems, recently has drawn attention to being utilized in blood biomarker diagnosis, blood typing, and immunoassays because of being high-Throughput, highly precise, and easy to use. Blood plasma separation is a most vital unit for pre-processing in these systems, since the blood plasma contains a lot of proteins and enzymes that should be separated, and precisely examined. Therefore, in this paper, for the first time, a numerical model was proposed to evaluate the plasma separation in various time scales and geometries, and an appropriate design was proposed. Furthermore, because the blood plasma volume is different between patients, and the... 

    Evaluation of Effective Parameters in Trapping Aerosols and Examination of Possibility of Detecting Distortions of Microdroplets by Means of Optical Tweezer

    , M.Sc. Thesis Sharif University of Technology Khajeh, Ahmad (Author) ; Seyed Reihani, Nader (Supervisor)
    Abstract
    Optical tweezer is a highly focused laser beam that could be used to trap micro and nano particles in three dimensions. It could be used to measure(or apply) piconewton range forces. Most of the optical tweezers experiments have been done in liquid mediums. In last few years, trapping particles which are floating in gas mediums(called aerosols) have been considered extensively. In this thesis, the changes in trap stiffness and conversion factor due to changes in laser power, trapping depth and particle are evaluated. It is shown that changing these three parameters, cause considerable changes in trap stiffnes and conversion factor. Linear behavior of trap stiffness versus laser power,... 

    Optimization of peroxidase-catalyzed oxidative coupling process for phenol removal from wastewater using response surface methodology

    , Article Environmental Science and Technology ; Volume 41, Issue 20 , 2007 , Pages 7073-7079 ; 0013936X (ISSN) Ghasempur, S ; Torabi, S. F ; Ranaei Siadat, S. O ; Jalali Heravi, M ; Ghaemi, N ; Khajeh, K ; Sharif University of Technology
    2007
    Abstract
    Hydroxylated aromatic compounds (HACs) are considered to be primary pollutants in a wide variety of industrial wastewaters. Horseradish peroxidase (HRP) is suitable for the removal of these toxic substances. However, development of a mathematical model and optimization of the HRP-based treatment considering the economical issues by novel methods is a necessity. In the present study, optimization of phenol removal from wastewater by horseradish peroxidase (HRP) was carried out using response surface methodology (RSM) and central composite design (CCD). As the initial experimental design, 2 4-1 half-fraction factorial design (H-FFD) is accomplished in triplicate at two levels to select the... 

    TiO2 nanofibre assisted photocatalytic degradation of reactive blue 19 dye from aqueous solution

    , Article Environmental Technology ; Volume 30, Issue 3 , 2009 , Pages 233-239 ; 09593330 (ISSN) Rezaee, A ; Ghaneian, M. T ; Taghavinia, N ; Khajeh Aminian, M ; Hashemian, S. J ; Sharif University of Technology
    2009
    Abstract
    The photocatalytic degradation of Reactive Blue 19 (RB19) dye has been studied using TiO2 nanofibre as the photocatalyst in aqueous solution under UV irradiation. Titanium dioxide nanofibre was prepared using a templating method with tetraisopropylorthotitanate as a precursor. The experiments were carried out in the presence of the TiO2 nanofibre, and the effects of pH and electron acceptors on the degradation process were investigated. In order to observe the quality of the aqueous solution, chemical oxygen demand (COD) measurements were also carried out before and after the treatments. The photocatalytic decomposition of RB19 was most efficient in acidic solution. With the addition of... 

    A Review on Structure Formation Via f(R) Gravity Models

    , M.Sc. Thesis Sharif University of Technology Khajeh Tabrizi, Zahra (Author) ; Rahvar, Sohrab (Supervisor)
    Abstract
    It has been about a decade that cosmological datas have shown the universe is accelerating. To describe this acceleration, cosmologosts use cosmological constant as the easiest way to describe,or the modified gravity models or smooth dark energy models as other ways. In this thesis we solved a specific structure formation problem, density contrast, for linear structures, in two different methods. the first method was LCDM model and the second method was a specific f (R) gravity model. We shpwed that these two solutions are about the same.
     

    Ideal orientations of BCC crystals under equibiaxial tension loading

    , Article Mathematics and Mechanics of Solids ; Volume 21, Issue 8 , 2016 , Pages 1026-1042 ; 10812865 (ISSN) Khajeh Salehani, M ; Hajian, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    Ideal orientations are one of the material characteristics of the applied mode of deformation. The transfer of material texture to orientations near specific ideal orientations can improve the mechanical properties of the material. In this paper, we focus on the determination of ideal orientations of BCC crystals under the equibiaxial tension mode of deformation. To do this, an Euler space scanning method based on a crystal plasticity approach is presented. In this method some initial orientations which are evenly spaced in the Euler space are selected and their evolutions into the ideal orientations are tracked. The loading is applied incrementally until all of the lattice spin components... 

    On lateral response of structures containing a cylindrical liquid tank under the effect of fluid/structure resonances

    , Article Journal of Sound and Vibration ; Volume 318, Issue 4-5 , 2008 , Pages 1154-1179 ; 0022460X (ISSN) Khajeh Ahmad Attari, N ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Academic Press  2008
    Abstract
    The lateral response of a single degree of freedom (SDOF) structural system containing a rigid circular cylindrical liquid tank, under harmonic and earthquake excitations is considered. The governing differential equations of motion for the combined system is derived considering the first 3 liquid sloshing modes (1,1), (0,1), and (2,1), under horizontal excitation. The system is considered nonlinear due to the convective term of liquid acceleration and the nonlinear surface boundary conditions, both caused by the inertial nonlinearity. The harmonic and seismic response of the system is investigated in the neighborhood of 1:1 and 1:2 internal resonances between the SDOF system and the first... 

    Mechanochemical Synthesis of Copper Doped Nanostructured Fluorapatite

    , M.Sc. Thesis Sharif University of Technology Nikonam Mofrad, Raheleh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Vahdati Khaki, Jalil (Co-Advisor)
    Abstract
    Fluorapatite (FA) has been widely used on orthopedic and dentistry prosthesis due to its excellent bioactivity properties. Therefore, the aim of this work is to prepare and characterize copper doped nanostructured fluorapatite powder via mechanical alloying (MA) method using a high energy planetary ball mill.FA powder samples with the general chemical formula Cux.Ca(10-x).(PO4)6.F2 (where x is the ratio of substitution of Cu-2 by F−1) are successfully synthesized using the starting materials of calcium oxide (CaO), phosphorous pentoxide (P2O5), calcium fluoride (CaF2), and copper (II) oxide (CuO) powders under various milling times. In order to evaluate the antibacterial effect of copper,... 

    High-order accurate numerical solution of incompressible slip flow and heat transfer in microchannels

    , Article Lecture Notes in Computational Science and Engineering, 22 June 2009 through 26 June 2009 ; Volume 76 LNCSE , June , 2011 , Pages 419-427 ; 14397358 (ISSN); 9783642153365 (ISBN) Hejranfar, K ; Mohafez, M. H ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    A high-order accurate implicit operator scheme is used to solve steady incompressible slip flow and heat transfer in 2D microchannels. The present methodology considers the solution of the Navier-Stokes equations using the artificial compressibility method with employing the Maxwell and Smoluchowski boundary conditions to model the slip flow and temperature jump on the walls in microchannels. Since the slip and temperature jump boundary conditions contain the derivatives of the velocity and temperature profiles, using the compact method the boundary conditions can be easily and accurately implemented. The computations are performed for a 2D microchannel and a 2D backward facing step in the...