Loading...
Search for: zahiri--j
0.168 seconds

    Design and Analysis of a Cell Injection Manipulator Made of a Piezo-Driven Double-Deck Stewart Platform

    , M.Sc. Thesis Sharif University of Technology Zahiri, Behnam (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor)
    Abstract
    With respect to the introduction of bio-material into cells (transfection) , microinjection is a highly efficient technique amongst existing methodologies. In cell injection, a manipulator injects the needle into a cellwhich is hold by a pipet mechanism. The moving range for the needle in this operation is of centimeter order and the resolution for the needle tip should be less than the cell’s diameter. In this thesis a Stewart system is used as for the manipulator. Stewart systems are used in flight simulators systems for decades, as mechanisms which are capable of providing multi-axis movements. In high accuracy positioning and multi-axis applications Stewart systems are highly reliable.... 

    Design Low Power Carry Skip Adder with Gate Diffusion Input Technique

    , M.Sc. Thesis Sharif University of Technology Zahiri Pirshahid, Ario (Author) ; Hajsadeghi, Khosrow (Supervisor)
    Abstract
    The purpose of this thesis is designing and implementation of a Carry Skip Adder using CMOS traditional technology and Gate Diffusion Input technique (GDI). I present a carry skip adder (CSKA) structure that has a higher speed, lower energy consumption compared with the conventional one. The Gate Diffusion Input is a novel technique for low power digital circuit design. This technique reduces the power dissipation, propagation delay, area of digital circuits and it maintains low complexity of logic design  

    Wire-Based friction stir processing as a novel pathway for solid-state surface alloying of magnesium

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 52, Issue 11 , 2021 , Pages 4737-4741 ; 10735623 (ISSN) Zahiri Sabzevar, M ; Mousavizade, S. M ; Pouranvari, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Wire-based friction stir processing is introduced as a solid-state surface alloying strategy for surface alloying of AZ31 magnesium alloy with aluminum, as a key alloying element in magnesium alloys. This technique enables the formation of a defect-free, grain refined and alloyed surface with the increased volume fraction of Mg-Al second phase, and thus, enhanced surface hardness. This simple technique provides a solid-state surface alloying pathway to improve the surface properties of the metallic materials. © 2021, The Minerals, Metals & Materials Society and ASM International  

    The Effect of Interlayer Thickness on Microstructure and Mechanical Properties of TLP Bonding on Dual Phase Steel

    , M.Sc. Thesis Sharif University of Technology Zahiri, Amir Hassan (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In this study, the effect of the Cu interlayer thickness was studied on St52 steel. Specimens with different thickness of the interlayer, were subjected to 1150 °C at different times. Isothermal solidification was completed for the thickness of the 50 μm, 30 μm, and 10 μm in 30, 25 and 20 minutes. Afterwards, homogenizing and dual-phase heat treatment were used for 75 minutes at 730°C. Optical microscopy and SEM were used to analyze the microstructure of the joints. Mechanical properties of the joints, including micro hardness of different parts of the joint and also shear strength of the joint zone were studied. The results show that after homogenizing treatment, microstructure and harness... 

    AntAngioCOOL: computational detection of anti-angiogenic peptides

    , Article Journal of Translational Medicine ; Volume 17, Issue 1 , 2019 ; 14795876 (ISSN) Zahiri, J ; Khorsand, B ; Yousefi, A. A ; Kargar, M. J ; Shirali Hossein Zade, R ; Mahdevar, G ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. Methods: A non-redundant dataset of 135 anti-angiogenic peptides (positive instances) and 135 non anti-angiogenic peptides (negative instances) was used in this study. Also, 20% of each class were selected to construct an independent test dataset (see Additional files 1, 2). We proposed an effective machine learning based R package (AntAngioCOOL) to predict anti-angiogenic peptides. We have examined more than 200 different classifiers to build... 

    Model Based Testing in Software Product Line

    , M.Sc. Thesis Sharif University of Technology Zahiri Mehrabadi, Mahdieh (Author) ; Mirian-Hosseinabadi, Hassan (Supervisor)
    Abstract
    Software product line (SPL) engineering offers several advantages such as reduced costs, high quality and less time to market in development of family of software products. The goal of software product line is systematic and effective development of a set of software products which share common and managed set of features. Software product line testing has its special challenges such as scalability and variability, and has significant importance due to the importance of quality in software product line and enormous number of possible products. Most of the popular methods in this domain have shortcomings such as having seam between development and testing processes, limited application scope... 

    afpCOOL: a tool for antifreeze protein prediction

    , Article Heliyon ; Volume 4, Issue 7 , 2018 ; 24058440 (ISSN) Eslami, M ; Shirali Hossein Zade, R ; Takalloo, Z ; Mahdevar, G ; Emamjomeh, A ; Sajedi, R. H ; Zahiri, J ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology. Substantial differences in the sequence and structure of the AFPs, pose a challenge for researchers to identify these proteins. In this paper, we proposed a novel method to identify AFPs, using supportive vector machine (SVM) by incorporating 4 types of... 

    Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: Enhancement of di-rhamnolipid proportion using gamma irradiation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 81, Issue 2 , 2010 , Pages 397-405 ; 09277765 (ISSN) Lotfabad, T. B ; Abassi, H ; Ahmadkhaniha, R ; Roostaazad, R ; Masoomi, F ; Zahiri, H. S ; Ahmadian, G ; Vali, H ; Noghabi, K. A ; Sharif University of Technology
    2010
    Abstract
    We previously reported that MR01, an indigenous strain of Pseudomonas aeruginosa, was able to produce a rhamnolipid-type biosurfactant. Here, we attempted to define the structural properties of this natural product. The analysis of the extracted biosurfactant by thin-layer chromatography (TLC) revealed the presence of two compounds corresponding to those of authentic mono- and di-rhamnolipid. The identity of two structurally distinguished rhamnolipids was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Liquid chromatography/mass spectrometry (LC/MS) of extracted biosurfactant revealed up to seventeen different rhamnolipid congeners. Further quantification showed... 

    Functional compartmentalization in the hemocoel of insects

    , Article Scientific Reports ; Volume 9, Issue 1 , 2019 ; 20452322 (ISSN) Pendar, H ; Aviles, J ; Adjerid, K ; Schoenewald, C ; Socha, J. J ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    The insect circulatory system contains an open hemocoel, in which the mechanism of hemolymph flow control is ambiguous. As a continuous fluidic structure, this cavity should exhibit pressure changes that propagate quickly. Narrow-waisted insects create sustained pressure differences across segments, but their constricted waist provides an evident mechanism for compartmentalization. Insects with no obvious constrictions between segments may be capable of functionally compartmentalizing the body, which could explain complex hemolymph flows. Here, we test the hypothesis of functional compartmentalization by measuring pressures in a beetle and recording abdominal movements. We found that the... 

    Linear index coding via graph homomorphism

    , Article Proceedings - 2014 International Conference on Control, Decision and Information Technologies, CoDIT 2014 ; 2014 , pp. 158-163 ; ISBN: 9781479967735 Ebrahimi, J. B ; Siavoshani, M. J ; Sharif University of Technology
    2014
    Abstract
    In [1], [2] it is shown that the minimum broadcast rate of a linear index code over a finite field Fq is equal to an algebraic invariant of the underlying digraph, called minrankq. In [3], it is proved that for F2 and any positive integer k, minrankq(G) ≤ k if and only if there exists a homomorphism from the complement of the graph G to the complement of a particular undirected graph family called 'graph family {Gk}'. As observed in [2], by combining these two results one can relate the linear index coding problem of undirected graphs to the graph homomorphism problem. In [4], a direct connection between linear index coding problem and graph homomorphism problem is introduced. In contrast to... 

    Emerging OCDMA communication systems and data networks [electronic resource]

    , Article Journal of Optical Networking ; Volume 6, Issue 9, 1 September 2007, Pages 1138-1178 Salehi, J. A ; Sharif University Of Technology
    Abstract
    I present an in-depth review of the trends and the directions taken by researchers worldwide in optical code-division multiple-access (OCDMA) systems. I highlight those trends and features that I believe are essential to the successful introduction of various OCDMA techniques in communication systems and data networks in the near future. In particular I begin by giving a comprehensive review of the construction of optical orthogonal codes (OOCs). Specifically I discuss the recently developed algorithms that are based on matrix algebra, which simplify and enhance the efficiencies of algorithms in OOC generation. In communication systems studies I first focus on and discuss various OCDMA... 

    Network delay analysis of a (σ, ρ) - Regular traffic stream over multiple paths in a network of fair-queuing servers

    , Article 2013 Iran Workshop on Communication and Information Theory ; May , 2013 , Page(s): 1 - 6 ; 9781467350235 (ISBN) Ashar, J. K ; Golestani, S. J ; Sharif University of Technology
    2013
    Abstract
    In this paper, we analyze the worst-case delay performance of a network of fair queuing servers in case of multiple-paths between source-destination pairs. In order to develop worst-case delay analysis for the multiple-path scenario, two challenging events should be addressed: merging different sub-streams of a session as well as distributing a traffic stream among different paths (traffic partitioning). Specifically, we propose to merge incoming sub-streams of a session to a node according to a limited rate Fair Queuing (FQ) scheme. Although the merged stream is treated as a unity, this approach results in a guaranteed level of service to each sub-stream. In addition, an algorithm is... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Precipitate strengthening of pyramidal slip in Mg–Zn alloys

    , Article Materials Science and Engineering A ; Volume 804 , 2021 ; 09215093 (ISSN) Alizadeh, R ; Wang, J ; LLorca, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The mechanical properties of Mg-4wt.% Zn alloy single crystals along the [0001] orientation were measured through micropillar compression at 23 °C and 100 °C. Basal slip was dominant in the solution treated alloy, while pyramidal slip occurred in the precipitation hardened alloy. Pyramidal dislocations pass the precipitates by forming Orowan loops, leading to homogeneous deformation and to a strong hardening. The predictions of the yield stress based on the Orowan model were in reasonable agreement with the experimental data. The presence of rod-shape precipitates perpendicular to the basal plane leads to a strong reduction in the plastic anisotropy of Mg. © 2020 Elsevier B.V  

    Precipitate strengthening of pyramidal slip in Mg–Zn alloys

    , Article Materials Science and Engineering A ; Volume 804 , 2021 ; 09215093 (ISSN) Alizadeh, R ; Wang, J ; LLorca, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The mechanical properties of Mg-4wt.% Zn alloy single crystals along the [0001] orientation were measured through micropillar compression at 23 °C and 100 °C. Basal slip was dominant in the solution treated alloy, while pyramidal slip occurred in the precipitation hardened alloy. Pyramidal dislocations pass the precipitates by forming Orowan loops, leading to homogeneous deformation and to a strong hardening. The predictions of the yield stress based on the Orowan model were in reasonable agreement with the experimental data. The presence of rod-shape precipitates perpendicular to the basal plane leads to a strong reduction in the plastic anisotropy of Mg. © 2020 Elsevier B.V  

    Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas

    , Article Additive Manufacturing ; Volume 34 , August , 2020 Li, S ; Zhang, L. J ; Ning, J ; Wang, X ; Zhang, G. F ; Zhang, J. X ; Na, S. J ; Fatemeh, B ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    This research explored the influences of shielding gases on the appearance of weld beads and the microstructures and mechanical properties of thin-wall samples using conventional gas metal arc welding as the heat source by using 5356 aluminium alloy welding wire as the raw materials and nitrogen (N2) and argon (Ar) as the shielding gases. The results showed that under the same parameters and after mono-layer single-bead welding was performed using N2 as the shielding gas, the bead height was higher, the bead width was narrower, and the penetration depth was shallower. The grain size of the thin-wall sample protected by N2 was 43.5–47.8 % smaller than that obtained under Ar protection.... 

    Solid products characterization in a multi-step mineralization process

    , Article Chemical Engineering Journal ; Vol. 252 , 2014 , Pages 210-219 ; ISSN: 13858947 Hemmati, A ; Shayegan, J ; Sharratt, P ; Yeo, T. Y ; Bu, J
    2014
    Abstract
    In this paper, we describe a carbon dioxide mineralization process and its associated solid products. These solid products include amorphous silica, iron hydroxides and magnesium carbonates. These products were subjected to various characterization tests, and the results are published here. It was found that the iron hydroxides from this process can have different crystalline properties, and their formation depended very much on the pH of the reaction conditions. Different forms of magnesium carbonate were also obtained, and the type of carbonate precipitated was found to be dependent on the carbonation temperature. Hydromagnesite was obtained mainly at low temperatures, while dypingite was... 

    Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test

    , Article Materials Science and Engineering A ; Volume 539 , 2012 , Pages 285-293 ; 09215093 (ISSN) Naghdabadi, R ; Ashrafi, M. J ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    Employing a proper pulse shaper in the conventional split Hopkinson pressure bar (SHPB) test helps to achieve dynamic equilibrium condition and to fulfill a constant strain rate condition in the test specimen. To this end, the parameters affecting the incident pulse shape, i.e., pulse shaper thickness, pulse shaper diameter, striker bar length and striker bar velocity are experimentally studied. Moreover, simulation results, validated by experimental data together with wave propagation analysis, are exploited to provide general guidelines to properly design a pulse shaper. It is recommended to use a relatively large diameter pulse shaper for testing work-hardening materials. Also, for... 

    Investigating and modeling the cleaning-in-place process for retrieving the membrane permeate flux: Case study of hydrophilic polyethersulfone (PES)

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 62 , May , 2016 , Pages 150–157 ; 18761070 (ISSN) Hedayati Moghaddam, A ; Shayegan, J ; Sargolzaei, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2016
    Abstract
    In this work the effects of backwash pressure, duration of acid and sodium hydroxide backwashing, sodium hydroxide concentration, and the duration of forward washing on performance of permeate flux recovery (PFR) were investigated. A two-level fractional factorial design (FFD) was used to design the experiments. The ability of back propagation neural network (BPNN) and radial basis function neural network (RBFNN) in predicting the performance of cleaning-in-place (CIP) of hydrophilic polyethersulfone (PES) membrane were investigated. It is found that BPNN has better ability in predicting the PFR performance than RBFNN. The best architecture of BPNN was a network consisting of 1 hidden layer...