Loading...
Search for: zamanian--akbar
0.087 seconds

    Performance Evaluation and Investigation of Nano-Ceramic Membrane in order to Purification of Hydrogen in Laboratory Scale

    , M.Sc. Thesis Sharif University of Technology heidari, Marziye (Author) ; Sayf Kordi, Ali Akbar (Supervisor) ; Zamanian, Akbar (Supervisor) ; Ganji Babakhani, Ensieh (Co-Advisor)
    Abstract
    Purification of hydrogen, as a clean source of energy has attracted great deal of attention in recent years. Among all available H2 separation methods, membrane technology has been known as the most appropriate way to produce hydrogen with high purity. In this study, we have tried to synthesis and evaluate the performance of perovskite ceramic membranes. The aim of preparing this type of membranes is to use them in separation processes in order to achieve H2 with high purity of >99%. First, general concepts about membranes are discussed. Then synthesis, recognition and performance evaluation of some perovskite membranes are presented. To prepare membranes, ceramic powders are synthesized by... 

    Simulation of Complex and Dry Reforming of Natural Gas to Produce Synthesis Gas And Their Technical and Economical Comparison

    , M.Sc. Thesis Sharif University of Technology Mollahassani Madjdabadi, mohammad Ali (Author) ; Kazemeini, Mohammad (Supervisor) ; Zamanian, Akbar (Supervisor) ; Baghalha, Morteza (Supervisor)
    Abstract
    In this study, two units of production of synthesis gas has been stimulated into 2 forms of natural gas complex (steam/Co2¬) reforming and dry reforming. They have been examined from technical and economical views. The product from this process is synthesis gas by the unit ratio of Hydrogen and Carbon Monoxide which is used in Arak petrochemical complex for producing 2EH. For producing this synthesis gas in 900C (reactor temperature) and 15 bar of total pressure , the ratio of feeding parts into reforming reactor for total input carbon (methane and other hydrocarbon) and Carbon dioxide gas and water vapor in representation ( [CH4 + other hydrocarbons : CO2 : H2O ] ) for complex reforming ... 

    Evaluation of the Effect of Anisotropy on Cyclic Behavior of Sands with Hollow Cylinder Apparatus

    , Ph.D. Dissertation Sharif University of Technology Zamanian, Mostafa (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Direction of loading and magnitude of the intermediate principal stress have significant effect on the soil responses. In many of in-situ loading the direction of major principal stress is not coincide to the deposition direction of the soil. Also, the magnitude of the intermediate principal stress should be exerted in the three dimensional loading condition. A reliable assessment of the soil behavior and a good estimation of the soil parameters need to do tests in similar condition with in-situ. So the testing apparatus should be able to control the loading direction in various stress paths. Typical equipments used in the geotechnical laboratory have not the ability to control the magnitude... 

    Experimental study of stress anisotropy and noncoaxiality of dense sand subjected to monotonic and cyclic loading

    , Article Transportation Geotechnics ; Volume 23 , 2020 Zamanian, M ; Jafarzadeh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The noncoaxiality of the principal stress direction and plastic principal strain increment has been broadly recognized as an influencing parameter for design of soil structures. Here we performed a series of systematic hollow cylinder experiments to study the effects of stress anisotropy on the noncoaxiality of dense Babolsar and Toyoura sands. A total of 25 undrained torsional shear tests were carried out under constant mean confining pressure, and fixed principal stress directions, α. We investigated the stress-strain behavior of dense sands for different α-directions, and cyclic stress ratio, CSR, under monotonic and cyclic loading conditions. The results show that the noncoaxiality value... 

    Initial Blank Design of Deep Drawn Single Layer Composite parts Using Inverse Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Zamanian, Hashem (Author) ; Assempour, Ahmad (Supervisor)
    Abstract

    The inverse finite element method was derived from ideal forming to predict the development blank of sheet forming process and the strain distribution according to the geometry of final product. In this project we present an inverse finite element method to obtain strain and stress distribution in final shape and design initial blank of deep drawing process. The procedure is as follows: First, strain distribution in deep drawn part is estimated by kinematics. Then by using Hill’s anisotropic plasticity and according to the associated plastic flow rule, stress distribution is obtained in deep drawn orthotropic part.Finally, initial blank is designed by considering external forces between... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an... 

    The determination of effective diffusivity coefficients in a solvent gas heavy oil system for methane

    , Article Petroleum Science and Technology ; Volume 30, Issue 24 , 2012 , Pages 2582-2593 ; 10916466 (ISSN) Zamanian, E ; Dadvar, M ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    2012
    Abstract
    In this investigation, an accurate high pressure and temperature diffusion setup was applied to measure the diffusion coefficients of methane in Iranian heavy oils in presence and absence of porous media by using the pressure-decay method. The solvent diffusivity in heavy oil was determined by both graphical and numerical methods. In addition, the effects of the porous medium and the temperature on the molecular diffusion coefficient of the solvent gas in the liquid phase were discussed and finally, using experimental data, a functionality dependence of molecular diffusivity on temperature and porous medium characteristics was proposed  

    A new empirical correlation for predicting effective molecular diffusivity of gas-heavy oil-porous media systems

    , Article Special Topics and Reviews in Porous Media ; Volume 3, Issue 1 , 2012 , Pages 23-33 ; 21514798 (ISSN) Zamanian, E ; Mirjordavi, N ; Kazemeini, M ; Ghazanfari, M. H ; Sharif University of Technology
    2012
    Abstract
    Molecular diffusivity is an essential parameter for modeling of mass transfer in enhanced oil recovery processes. However, experimentally determined diffusivities for light gas-heavy oil systems in the presence of porous media are relatively rare. A few correlations are available in the literature that predict diffusivity of gases into heavy oil in presence of porous media. In this work the pressure-decay method was applied to obtain effective molecular diffusion of CO 2, CH 4 and N 2-heavy oil systems in both bulk and porous media systems at different temperatures. The diffusivity of gases in heavy oil was determined by matching the numerically calculated pressures to the measured data. A... 

    Simulation and Optimization of Biogas Production Via Anaerobic Digestion of Biomass

    , M.Sc. Thesis Sharif University of Technology Zamanian Howach, Hadi (Author) ; Rashtchian, Davoud (Supervisor) ; Askaripour, Hossein (Supervisor)
    Abstract
    Biogas, a mixture of methane and carbon dioxide, is produced through the anaerobic digestion of organic materials where microorganisms, under oxygen-free conditions, convert organic materials through four stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. This renewable and sustainable energy source significantly contributes to reducing dependence on fossil fuels, decreasing greenhouse gas emissions, managing organic waste effectively, and preventing soil and water pollution. In this study, the ADM1 model was used to simulate the conversion of organic materials into biogas, with simulations conducted using Aspen Plus and MATLAB software. The system simulated consists of two... 

    Bioactivity of Surface Modified Titanium Alloy Ti-6Al-4V ELI by Pack Siliconizing in Simulated Body Fluid

    , M.Sc. Thesis Sharif University of Technology Rezvani, Alireza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Titanium alloy Ti-6Al-4V ELI with high biocompatibility and corrosion resistance, has a lot of applications in biomedical engineering. Disadvantage of this alloy is it’s disability to create a fast and good contact with the host/bone environment, after implanting in the body. Beside that it has low wear resistance. Nowadays to optimize the wear resistance, bioactivity and osteoconduction of surface of implants which are made from this alloy, the surface morphology are optimized in size and distribution. Different surface treatments are used for producing rough and porous surfaces to improve bioactivity along with wear resistance. In this study, surface modification of Ti-6Al-4V ELI was done... 

    Characterization of Metallurgical and Geometrical Parameters on Fracture Behavior of Pure Titanium thin Sheets

    , M.Sc. Thesis Sharif University of Technology Nasiri, Hamid (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Commercially pure titanium (CP-Ti) is an important groups of titanium family and because of high strength, low density, high corrosion resistance and biocompatibility, this group of titanium is a suitable choice for application at chemical, petrochemical and medicine industry. Nowadays surgeons have a tendency toward use of CP-Ti instead of Ti-6Al-4V alloy. Moreover, because of body anatomy limitation, use of thick sheets result in high volume and damage soft tissue. Therefore, for sheet thickness reduction, study of the effects of metallurgical and geometrical parameter on fracture behavior of thin sheets is important. In this study, the fracture behavior of CP-Ti thin sheets investigated.... 

    2D computational fluid dynamic modeling of human ventricle system based on fluid-solid interaction and pulsatile flow

    , Article Basic and Clinical Neuroscience ; Volume 4, Issue 1 , 2013 , Pages 64-75 ; 2008126X (ISSN) Masoumi, N ; Framanzad, F ; Zamanian, B ; Seddighi, A. S ; Moosavi, M. H ; Najarian, S ; Bastani, D ; Sharif University of Technology
    2013
    Abstract
    Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain... 

    Investigation of the Role of Fiber Reinforcement on the Performance of Rubber Based Friction Material

    , M.Sc. Thesis Sharif University of Technology Arjmand, Mohammad (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Friction composites, as a part of vehicle safety system, should hold some characteristics such as high wear resistance, low weight, durability, low noise, stable friction coefficient, availability and low price. It is very interested to use mixture of rubber and resin in friction materials to reach good properties of both rubber and resin simultaneously. This mixture is especially used in railway’s brake pads. Fibrous reinforcement is another important ingredient in friction composites. Asbestos used to be the most significant fibrous reinforcement due to its appropriate tribological specifications but the recent ban on asbestos by environmental protection agency has forced the friction... 

    Experimental and Theoretical Investigation on the Frictional Performance of Friction Materials of Brake System

    , M.Sc. Thesis Sharif University of Technology Saffar, Amir (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Various composite friction materials containing 40 vol.% organic binder (phenolic resin plus styrene-butadiene-rubber (SBR)) with varying phenolic-resin/SBR ratio were prepared. The content of phenolic resin in each composite was indicated by the resin value (RV) index ranging between 0-100%. The composites with RVs greater than 50% form resin-based friction materials in which the primary binder is the phenolic resin. For RVs less than 50%, the composites become the rubber-based materials where the primary binder is the SBR. The analysis of mechanical properties exhibited that the conformability of the composites increases upon incorporation of SBR. The frictional analysis revealed that type... 

    Neutral Spin Collective Mode in Carbon Nanotubes

    , M.Sc. Thesis Sharif University of Technology Sayyad, Sharareh (Author) ; Jafari, Akbar (Supervisor)
    Abstract
    In 2002 Baskaran and Jafari published an article that was about a spin-1 collective mode. Similarity between carbon nanotubes and graphene was a motivation for working on this project, in order to find another spin mode by considering random phase approximation as a simple way of finding collective motion of a physical systems. Moreover rolling graphene sheet induce diffrent physical properties as a result of chiral axis . In this project we focus only on achiral nanotubes and at last find two collective modes in this structures  

    Investigation on the Effect of MWCNT on the Properties of NR/SBR Rubber Blend and the Comparison with Conventional and High Structure Carbon Blacks

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Morteza (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    In recent years, using the nanoparticles has caused a great revolution and development into the materials structure and the polymer science developed corresponding to important role of it in consumer goods. So Carbon Nano Tubes (CNTs) belonging to the precious physical, Mechanical and thermal properties has been studied. The CNT is mixed by mechanical and solution methods with elastomeric matrix. In this research the mechanical method used, because of industrial applications. Although, there are many challenges against dispersion owing to weak cohesion between CNTs and matrix in the mechanical method. The progress in rubber composites reinforced by CNTs and other reinforcement and as well as... 

    Evaluating and Improving the Reliability of Reversible Adiabatic Logic Styles

    , M.Sc. Thesis Sharif University of Technology Akbar, Reza (Author) ; Ejlali, Alireza (Supervisor)
    Abstract
    Adiabatic logic families are a group of logic circuits which operate based on adiabatic principles to tremendously reduce power consumption. These families have basic difference with common logic families in transistor level structure and there signals are not quadrangular but trapezoidal. Also, in these systems the source lines and clock pulse are the same. Research on Adiabatic families needs theoretical information in reversible computing. So we will start this project with explaining fundamental information in this field. After that some of these logic families are introduced and three important and widely used of them (SCRL-RERL-2LAL) are chosen to simulate. In each of these families... 

    Fabrication and Characterization of Phenolic Resin/Glass Fiber/Organoclay Nanocomposites

    , M.Sc. Thesis Sharif University of Technology Eesaee, Mostafa (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    In this research the effects of addition of clay in phenolic glass fiber reinforced composite has been investigated. Layered clay/phenolic nanocomposite resin systems were first prepared with 0.5, 1.5 and 2.5 wt% of Cloisite Na+ (CN) and Cloisite 30B (CB). After that the suspension was hold in an ultrasonic bath for 30 min in order to enhance nanodispersion of the clay platelet within the resin. The phenolic/clay solution was used to impregnate the glass fabric using the solvent impregnation method. After suspension for 2 days in the room with natural condition, the impregnated fabrics were pre-cured at 135 ˚C in an oven for 3.5 min to obtain B-stage prepregs. Seven layers of prepregs (150... 

    Modeling and Optimization of Composite Brake Friction Materials Formulation

    , M.Sc. Thesis Sharif University of Technology Khazaei, Ali (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Automotive brake pad is one of the most widely used composites. Commonly, more than 10 components are applied to make these materials and due to the large number of components and interactions between them, choice, explaination of the behavior and optimization of brake friction materials are some industry's challenges. Until now, some methods have been presented to design and optimization of these materials, but due to different complexities, there is lack of practical method that could be used for explaining the tribological behavior, engineering calculation and optimization of brake friction materials. Today, formulation of the current brake pads in the industry has mainly come from trial... 

    An Investigation on the Behavior of Nanoparticle Filled Brake Friction Materialls

    , M.Sc. Thesis Sharif University of Technology Jahanmard, Parisa (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    The most common type of polymer based composite friction materials are usually in vehicles as the brake pads are used and must characteristics such as high wear resistance, low weight, durability, low noise and stable friction coefficient. Polymer matrix, in addition to providing other material suitable for storage, the final properties, including mechanical properties, heat, friction and wear is also effective. Thermoset resin polymer matrixes (usually phenolic resin) are used in the brake pads which used for automotive and in some cases, rubber particles as powder formulations may be entered, in order to achieve good properties of rubber and resin simultaneously. Nanofillers because of...