Loading...
Search for:
zamzamian--a
0.266 seconds
Total 14662 records
A study on the mobility of [formula presented] edge dislocation in low-carbon α-Fe and its interactions with damage cascade: on picosecond time scale using molecular dynamics simulations
, Article Journal of Nuclear Materials ; Volume 527 , 2019 ; 00223115 (ISSN) ; Feghhi, A. H ; Samadfam, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
Molecular dynamics simulations were used to propose a closed-form expression for the mobility of the [Formula presented] edge dislocation in low-carbon α-Fe (up to 0.1 at.% C) at temperatures of 300, 400 and 500 K and applied shear stresses of 10–100 MPa. Considering this parameter helps us to understand the effect of damage cascade on the dislocation mobility. The results confirmed that the point defect clusters at the thermal spike stage of the cascade (that they can be considered as an unstable precipitation-like phase), the distance of damage cascade relative to the center of the dislocation core and forming carbon-vacancy (C–V) complexes are some rather stronger obstacles for movement...
Optimization of the marinelli beaker dimensions using genetic algorithm
, Article Journal of Environmental Radioactivity ; Volume 172 , 2017 , Pages 81-88 ; 0265931X (ISSN) ; Hosseini, S. A ; Samadfam, M ; Sharif University of Technology
2017
Abstract
A computational code, based on the genetic algorithm and MCNPX version 2.6 code was developed and used to investigate the effects of some important parameters of HPGe detector (such as Al cap thickness, dead-layer thickness and Ge hole size) on optimum dimensions of marinelli beaker. In addition, the effects of detector material on optimal beaker dimensions were also investigated. Finally, the optimized beaker dimensions at various beaker volumes (300, 500, 700, 1000 and 1500 cm3) were determined for some conventional Ge detectors with different crystal sizes (16 sizes). These sets of data then were used to drive mathematical formulas (obtained by best fitting to data sets). The results...
Atomistic simulation of the effect of carbon content and carbon-rich region on irradiation response of α-Fe on picosecond timescale
, Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 443 , 2019 , Pages 70-78 ; 0168583X (ISSN) ; Samadfam, M ; Feghhi, S. A ; Arjhangmehr, A ; Sharif University of Technology
Elsevier B.V
2019
Abstract
α-Fe with low carbon content is a base material which is commonly used in manufacturing of Reactor Pressure Vessel (RPV) of commercial nuclear power plants. Carbon is generally diffused to α-Fe matrix to improve some of its mechanical properties. The presence of carbon may alter the irradiation response of the steel. In the current study, using molecular dynamics simulations, we have investigated the influence of carbon (∼in either dispersed form or carbon-rich region as chain) in the primary damage states of α-Fe low carbon steels. It is found that carbons in dispersed form have no significant effect on the self-interstitial atoms (SIAs) in α-Fe. While, carbon-rich (C-rich as...
Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow
, Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
2011
Abstract
Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical...
Determining of the optimized dimensions of the Marinelli beaker containing source with inhomogeneous emission rate by using genetic algorithm coupled with MCNP and determining distribution type by neural networks
, Article Applied Radiation and Isotopes ; Volume 157 , 2020 ; Hosseini, S. A ; Feghhi, S. A ; Samadfam, M ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
In order to determine the activity of C137s in soil resulting from nuclear accidents or fallouts, the best choice is to use HPGe detectors due to their best energy resolutions. In this regard, in order to enhance the detection efficiency, the Marinelli beakers have been used to increase the radiation interaction with the sensitive volume of the detector. In previous works, to optimize the dimension of Marinelli beakers, the assumption was that the emission rate of the source is homogeneous in beaker volume. In the present study, to investigate the effect of the inhomogeneous emission rate of the source on the optimum dimensions of the beaker, in a simple case, the beaker was divided into two...
Atomistic simulation of the effect of radiation-induced point defects on uniaxial tension behavior of single-crystal α-Fe containing low carbon in solution
, Article European Physical Journal Plus ; Volume 137, Issue 3 , 2022 ; 21905444 (ISSN) ; Feghhi, S. A. H ; Samadfam, M ; Sharif University of Technology
Springer Science and Business Media Deutschland GmbH
2022
Abstract
Molecular dynamics simulations are employed to investigate the effects of Frenkel pairs resulted from displacement cascade in single-crystal α-Fe containing ~ 0.09 at.% C on the uniaxial tension behavior in α-Fe with and without the presence of a 12〈111〉{01¯1} edge dislocation. These point defects did not considerably change the elastic modulus. The drop in the ultimate tensile strength of perfect α-Fe is not very considerable, and it decreased by 2% in the case of the presence of the edge dislocation in α-Fe. The simulations showed there is a sudden phase transformation from BCC crystal structure to FCC and HCP with the beginning of the plastic deformation that the first one is predominant...
, M.Sc. Thesis Sharif University of Technology ; Vosoughi, Nasser (Supervisor)
Abstract
High purity Germanium (HPGe) detector is a sub branch of semiconductor detectors which has very good resolution, very little dead time, able tobuild in large dimensions and suitable for any condition that it is using in vast fields from space investigation to radiation therapy. this detector is usually used to detecting gamma radiations furthermore the best resolution can be attained with decreasing leakage current. for analyzing about operation of the HPGe detector, it needs to initiate a model of this detector. in this studing has been used modelGEM-15190,POP-TOP which is built by ortec company. for initiating, it was used liquid nitrogen and accessory equipments like high voltage supply,...
Atomistic investigation of the effects of symmetric tilt grain boundary structures on irradiation response of the α-Fe containing carbon in solution
, Article Computational Materials Science ; Volume 166 , 2019 , Pages 82-95 ; 09270256 (ISSN) ; Feghhi, S. A ; Samadfam, M ; Darvishzadeh, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In this paper, molecular dynamics simulations were used to investigate the effect of the presence of carbon atoms, either in dispersed form or C-rich region, in low-carbon α-Fe containing symmetric tilt grain boundary (STGB)with a boundary plane rotated about the 110 misorientation axis on the number of SIAs and vacancies produced by PKA energies of 3, 5, 7 and 9 keV at 300 K. Results were compared with the SIAs and vacancies produced in pure α-Fe. It was also shown that the presence of GBs in this Fe-C alloy has no effect on the time at which point defects reach to their maximum values at the thermal spike stage. On the other hand, the GBs decrease the number of point defects in comparison...
Simultaneous alpha and gamma discrimination with a phoswich detector using a rise time method and an artificial neural network method
, Article Applied Radiation and Isotopes ; Volume 154 , 2019 ; 09698043 (ISSN) ; Feghhi, S. A. H ; Moghadam, S. R ; Zamzamian, S. M ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
We used two digital methods—rise time discrimination (RTD) and an artificial neural network (ANN)—to simultaneously discriminate alpha particles and gamma rays detected by a phoswich detector (50 μm BC-400 coupled to 3 mm CsI(Tl)). The results for 10,000 pulses discriminated by the RTD method showed that the rise time distribution of the pulses is rather vast (between 200 and 800 ns for gamma rays and less than 40 ns for alpha particles). The same result was also observed in the dual-parameter diagram (pulse rise time versus area under the pulse) for an 241Am source. Then, as another approach, three pulse features—rise time, pulse height ratio, and charge ratio—were extracted from 2000...
The formation and dissociation energy of vacancies in cementite: A first-principles study
, Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 502 , 2021 , Pages 157-163 ; 0168583X (ISSN) ; Amirhossein Feghhi, S ; Samadfam, M ; Sharif University of Technology
Elsevier B.V
2021
Abstract
Because of the possibility of various types of vacancies in cementite due to its crystalline structure, the focus of this paper was only on vacancies. In this regard, the formation energies of single, two, three and four vacancies of over than 120 different cases were calculated using first-principles method. For the case of single vacancy, the results were in three values of ~1.63, 1.39 and 0.78 eV according to iron vacancies at general positions, iron vacancies located on mirror planes and carbon vacancies in the interstitial positions, respectively. The results for the case of two, three and four vacancies were between from 2.10 to 3.34 eV, from 3.92 to 5.10 eV and from 4.77 to 6.33 eV,...
Short Term and Long Term Analysis of Radiation Damage in Carbon Based Steels with Emphasis on Reactor Pressure Vessel
, Ph.D. Dissertation Sharif University of Technology ; Samadfam, Mohammad (Supervisor) ; Feghhi, Amir Hossein (Supervisor)
Abstract
Steels as structural materials of pressure vessels of nuclear reactors, in addition to high temperatures and pressures, are exposed to ionizing radiation such as neutrons. The primary effects of damage caused by exposing these solids to radiation are the displacement of atoms from their equilibrium positions and the formation of point defects and damage clusters caused by damage accumulation due to displacement cascades produced by transmitting the energy of the incident particle to an atom by interactions such as elastic and inelastic scatterings neutrons with the nucleus. These microstructural changes cause large structural defects such as swelling, cracking, cracking, creep, reducing...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
, Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2022
Abstract
The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been...
Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact
, Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...
Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test
, Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its...