Loading...
Search for: zangeneh-nejad--f
0.184 seconds

    Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure

    , Article Journal of Nanophotonics ; Volume 10, Issue 3 , 2016 ; 19342608 (ISSN) Zangeneh Nejad, F ; Safian, R ; Sharif University of Technology
    SPIE  2016
    Abstract
    We propose a hybrid graphene molybdenum disulphide-based photoconductive antenna to overcome the restrictions of metallic photoconductive antennas and graphene-based photoconductive antennas, simultaneously. The structure is composed of a hybrid graphene-MoS2 strip as the antenna deposited on a low-temperature gallium arsenide substrate. A full-wave electromagnetic solver, namely, high frequency structural simulator (HFSS) is used to analyze the whole structure. It is shown that the proposed photoconductive antenna provides us with not only high input impedance and reconfigurability but also high values of matching efficiency and radiation efficiency. The impact of increasing MoS2 layers on... 

    A graphene-based THz ring resonator for label-free sensing

    , Article IEEE Sensors Journal ; Volume 16, Issue 11 , 2016 , Pages 4338-4344 ; 1530437X (ISSN) Zangeneh Nejad, F ; Safian, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we report on a novel resonant THz sensor for label-free analysis. The structure consists of a silicon nitride dielectric ring resonator vertically coupled to a thin layer of graphene strip ring resonator on top. The cladding is assumed to be porous alumina on the top of the graphene strip, which enhances the interaction of the surface plasmon wave and the target molecules. Finite difference time domain analysis is used to systematically design the structure and to investigate the performance of the sensor. Our simulations show that the proposed structure has larger refractive index sensitivity and lower intrinsic quality factor with respect to the similar optical structure. It... 

    Spatial integration by a dielectric slab and its planar graphene-based counterpart

    , Article Optics Letters ; Volume 42, Issue 10 , 2017 , Pages 1954-1957 ; 01469592 (ISSN) Zangeneh Nejad, F ; Khavasi, A ; Sharif University of Technology
    2017
    Abstract
    In this contribution a new approach to perform spatial integration is presented using a dielectric slab. Our approach is indeed based on the fact that the transmission coefficient of a simple dielectric slab at its mode excitation angle matches the Fourier-Green's function of first-order integration. Inspired by the mentioned dielectric-based integrator, we further demonstrate its graphene-based counterpart. The latter is not only reconfigurable but also highly miniaturized in contrast to the previously reported designs [Opt. Commun. 338, 457 (2015)]. Such integrators have the potential to be used in ultrafast analog computation and signal processing. © 2017 Optical Society of America  

    Analog optical computing by half-wavelength slabs

    , Article Optics Communications ; Volume 407 , 2018 , Pages 338-343 ; 00304018 (ISSN) Zangeneh Nejad, F ; Khavasi, A ; Rejaei, B ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A new approach to perform analog optical differentiation is presented using half-wavelength slabs. First, a half-wavelength dielectric slab is used to design a first order differentiator. The latter works properly for both major polarizations, in contrast to our previously design based on Brewster effect (Youssefi et al., 2016). Inspired by the proposed dielectric differentiator, and by exploiting the unique features of graphene, we further design and demonstrate a reconfigurable and highly miniaturized differentiator using a half-wavelength plasmonic graphene film. To the best of our knowledge, our proposed graphene-based differentiator is even smaller than the most compact differentiator... 

    Beam focusing using two-dimensional graphene-based meta-reflect-array

    , Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 613-616 ; 9781467387897 (ISBN) Zangeneh Nejad, F ; Abdollahramezani, S ; Arik, K ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    A highly efficient two-dimensional meta-reflect-array manipulating the phase and amplitude of far-infrared electromagnetic wave is proposed. The reflect array consists of patterned graphene nano-disks resides on a subwavelenght thick optical cavity to enhance the interaction of electromagnetic wave. It is shown that the reflected wave from each unit cell can almost cover the 2π range phase shift by changing the radius of the graphene nano-disks while at the same time maximizes its amplitude. Proposing a transmission line model for the proposed structure, we realize a meta lens as a flat optics functionality. © 2016 IEEE  

    Realization of Mathematical Operators Using Zeros and Poles of Transmission and Reflection Coefficients

    , M.Sc. Thesis Sharif University of Technology Zangeneh Nejad, Farzad (Author) ; Khavasi, Amin (Supervisor) ; Rejaei, Behzad (Co-Advisor)
    Abstract
    Although digital computers have been developed enormously in recent years, analog computing is still of great importance in some specialized application. There are basically two different methods to perform analog computing: metasurface approach (MS) and Green’s function (GF) method. In this contribution, we have focused our attention to the second method. In this approach, the associated Green’s function of the operator of choice is directly performed using a multilayered slab. Despite the applicability of this method, there are two major drawbacks regarding it. The first one is that it is only feasible to perform operators whose Green’s functions have an odd symmetry in the spatial Fourier... 

    Inhibitory effects of functionalized indium doped ZnO nanoparticles on algal growth for preservation of adobe mud and earthen-made artworks under humid conditions

    , Article International Biodeterioration and Biodegradation ; Volume 127 , Febraury , 2018 , Pages 209-216 ; 09648305 (ISSN) Shariati, M ; Mallakin, A ; Malekmohammady, F ; Khosravi Nejad, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this article, indium doped ZnO nanoparticles (alloy nanoparticles) were investigated as inhibitors against algae growth on adobe mud and earthen artworks for surface preservation from destruction caused by micro-organisms under humid conditions, through surface modification and activation run off. Nanoparticles (NPs) were fabricated by physical vapor deposition (PVD) growth mechanism. The fabricated NPs were approximately 20 nm in size. The Chlorella vulgaris and Scenedesmus quadricauda were tested by application of indium doped ZnO nanoparticles (In/ZnO NPs) as inhibitors. As concentrations of NPs increased, the negative impacts of NPs on the algal growth were enhanced and physical... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 5 , 2010 , Pages 29-33 ; 9780791849194 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Saffar Avval, M ; Alasty, A
    2010
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    The effect of oxygenate additives on the performance of PtSnγ - Al2O3 catalyst in the propane dehydrogenation process

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1377-1383 ; 10263098 (ISSN) Fattahi, M ; Khorasheh, F ; Sahebdelfar, S ; Zangeneh, F. T ; Ganji, K ; Saeedizad, M ; Sharif University of Technology
    2011
    Abstract
    The effect of oxygenate modifiers on the performance of PtSnγAl 2O3 catalyst in dehydrogenation of propane was studied. Dehydrogenation reaction was carried out in a fixed-bed quartz reactor in the temperature range of 575620 °C. Two types of oxygenate modifiers, namely water and methanol, were added to the feed. The optimum amounts of water for reaction temperatures of 575, 600 and 620 °C were 84, 120 and 140 ppm, respectively. The optimum amounts of methanol for the same reaction temperatures were 9.9, 25 and 50 ppm, respectively. Any further addition of water or methanol beyond these optimum levels resulted in a loss in activity. The addition of water or methanol led to the formation of... 

    Robust regulation and tracking system design for multivariable control of the tape transport mechanism

    , Article Microsystem Technologies ; Vol. 18, Issue. 5 , 2012 , pp. 557-573 ; ISSN: 09467076 Moradi, H ; Bakhtiari-Nejad, F ; Alasty, A ; Sharif University of Technology
    2012
    Abstract
    Tape mechanisms must be able to transport the tape with a constant velocity for achieving high rate of data transfer. In this paper, a multivariable model of tape transport mechanism including the take-up and supply reel servos for tape tension control and capstan servo for speed control is considered. To achieve desired performance,pole-placement approach based on general canonical control form (GCCF) is used. Instead of using expensive tension sensors, an observer is designed. A regulator system is developed for disturbance rejection; and a modified integral control is designed for perfect tracking of desired setpoints in tape speed and tensions. Since the real dynamic model associates... 

    Robust regulation and tracking system design for multivariable control of the tape transport mechanism

    , Article Microsystem Technologies ; Volume 18, Issue 5 , 2012 , Pages 557-573 ; 09467076 (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Alasty, A ; Sharif University of Technology
    2012
    Abstract
    Tape mechanisms must be able to transport the tape with a constant velocity for achieving high rate of data transfer. In this paper, a multivariable model of tape transport mechanism including the take-up and supply reel servos for tape tension control and capstan servo for speed control is considered. To achieve desired performance,pole-placement approach based on general canonical control form (GCCF) is used. Instead of using expensive tension sensors, an observer is designed. A regulator system is developed for disturbance rejection; and a modified integral control is designed for perfect tracking of desired setpoints in tape speed and tensions. Since the real dynamic model associates... 

    Control of a nonlinear boiler- turbine unit using two methods: Gain scheduling & feedback linearization

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 9 PART A , 2008 , Pages 491-499 ; 0791843033 (ISBN); 9780791843031 (ISBN) Moradi, H ; Alasty, A ; Bakhtiari Nejad, F ; Sharif University of Technology
    2008
    Abstract
    To achieve a good performance of a boiler-turbine unit, dynamic variables such as steam pressure, water level of drum and electric output of turbine must be controlled. In this paper a nonlinear model of the boiler-turbine unit is considered in which the inputs are the valve positions of fuel flow, steam control, and feed-water flow. Using two control methods, feedback linearization and gain scheduling, a PI controller is designed. It is shown that by applying both methods, system goes from one operating point to another with an appropriate specification of time response. Results show that system with a controller designed based on gain scheduling method has a better time response from a... 

    High-impact promotional effect of mo impregnation on aluminum-rich and Alkali-treated hierarchical zeolite catalysts on methanol aromatization

    , Article ACS Omega ; Volume 5, Issue 21 , 2020 , Pages 11971-11986 Ghanbari, B ; Kazemi Zangeneh, F ; Taheri Rizi, Z ; Aghaei, E ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    A systematic change of HZSM-5 (HZ5) as a catalyst of the methanol to aromatics (MTA) reaction was undertaken by employing a fixed-bed tubular-type reactor under ambient pressure, applying a weight hourly space velocity (WHSV) of 2 h-1 at 375 °C, as the first report on the application of low-Si/Al-ratio alkaline-[Mo,Na]-HZSM-5 in the MTA process. To characterize the surface and textural properties of the catalysts, powder X-ray diffraction (PXRD), nitrogen adsorption/desorption, temperature-programmed desorption of ammonia (NH3-TPD), pyridine-infrared spectroscopy (Py-IR), thermogravimetric analysis (TGA), and energy-dispersive X-ray (EDX) methods were employed. Gas chromatography (GC) and... 

    Regulator and tracking system design for a single-rod hydraulic actuator via pole-placement approach

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 173-181 ; 9780791854938 (ISBN) Moradi, H ; Hajikolaei, K. H ; Bakhtiari Nejad, F ; Sharif University of Technology
    2011
    Abstract
    Due to the nonlinear dynamics of hydraulic systems, applying high performance closed-loop controllers is complicated. In this paper, a single-rod hydraulic actuator is considered in which load displacement (for positioning purposes) is controlled via manipulation of the input voltage to the servo-valve. Dynamics of the servo-valve is described by first and second order transfer functions (named as Models 1 and 2). Through linearization of the system around its operating points, dynamics of the hydraulic actuator is represented in the state space. A full-order observer is designed for on-line states estimation. Then, feedback control system is designed for both regulation and tracking... 

    Using a vibration absorber to suppress chatter vibration in turning process with a worn tool

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 1, Issue PART B , August-September , 2010 , Pages 1335-1341 ; 9780791848982 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedi, M. R ; Sharif University of Technology
    2010
    Abstract
    Dynamic vibration absorbers are used as semi-active controllers to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA). In this paper, regenerative chatter in an orthogonal turning process is suppressed using a (TVA). It is shown that TVA can modify the frequency response function of the cutting tool so as to improve cutting stability in turning process. In addition, tool wear is an important factor which works as a positive damping and helps the chatter suppression beside exertion of the TVA. Finally, using the SIMULINK Toolbox of... 

    Using a vibration absorber to suppress chatter vibration in turning process with a worn tool

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 1, Issue PARTS A AND B , 2009 , Pages 1335-1341 ; 9780791848982 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedi, M. R ; Sharif University of Technology
    2009
    Abstract
    Dynamic vibration absorbers are used as semi-active controllers to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA). In this paper, regenerative chatter in an orthogonal turning process is suppressed using a (TVA). It is shown that TVA can modify the frequency response function of the cutting tool so as to improve cutting stability in turning process. In addition, tool wear is an important factor which works as a positive damping and helps the chatter suppression beside exertion of the TVA. Finally, using the SIMULINK Toolbox of... 

    Nonlinear oscillation and stability analysis of the turning process with a worn tool

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 1, Issue PARTS A AND B , 2009 , Pages 927-934 ; 9780791848982 (ISBN) Moradi, H ; Ahmadian, M. T ; Bakhtiari Nejad, F ; Sharif University of Technology
    2009
    Abstract
    Self-excited and forced vibrations are important topics in machining processes because their occurrence results in poor surface finish, increase in tool wear and hampers productivity. In this paper, turning process is modeled as a SDOF dynamic system including quadratic and cubic structural nonlinearities. The effect of tool flank wear, as a contact force between the work-piece and tool, is addressed vigorously. Multiple scale method is used to find the solution of the nonlinear dynamic equation including regenerative chatter, forced excitation and tool wear. It is shown that, width of cut can be considered as the bifurcation parameter of the system. Primary, super-harmonic and sub-harmonic... 

    A tunable vibration absorber design to suppress chatter in boring manufacturing process

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 9 PART C , 2008 , Pages 1943-1950 ; 0791843033 (ISBN); 9780791843031 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedi, M. R ; Sharif University of Technology
    2008
    Abstract
    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA) which can act as a semi-active controller. In this paper, by applying a (TVA), chatter vibration is suppressed during boring process in which boring bar is modeled as a cantilever Euler-Bernoulli beam. The optimum specifications of absorber such as spring stiffness, absorber mass and its position can be determined by developing an algorithm based upon mode summation method. Finally, using the SIMULINK Toolbox of MATLAB, the analog simulated... 

    Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process

    , Article Journal of Sound and Vibration ; Volume 318, Issue 1-2 , 2008 , Pages 93-108 ; 0022460X (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedy, M. R ; Sharif University of Technology
    2008
    Abstract
    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber... 

    Analog computing by Brewster effect

    , Article Optics Letters ; Volume 41, Issue 15 , 2016 , Pages 3467-3470 ; 01469592 (ISSN) Youssefi, A ; Zangeneh Nejad, F ; Abdollahramezani, S ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2016
    Abstract
    Optical computing has emerged as a promising candidate for real-time and parallel continuous data processing. Motivated by recent progresses in metamaterial-based analog computing [Science 343, 160 (2014)], we theoretically investigate the realization of two-dimensional complex mathematical operations using rotated configurations, recently reported in [Opt. Lett. 39, 1278 (2014)]. Breaking the reflection symmetry, such configurations could realize both even and odd Green's functions associated with spatial operators. Based on such an appealing theory and by using the Brewster effect, we demonstrate realization of a firstorder differentiator. Such an efficient wave-based computation method...