Loading...
Search for: adsorption
0.195 seconds

    Comparison of Activated Carbon from Cellulose Resources in Separating Oil Pollutants from Contaminated Water (Case Study: Benzene)

    , M.Sc. Thesis Sharif University of Technology Soltani, Samira (Author) ; Borgheie, Mehdi (Supervisor)
    Abstract
    Activated carbon, as an adsorbent with a high adsorption capacity and low cost, has many applications in liquid and gas adsorption processes. Among the adsorption of liquid phase, there are examples of drinking water purification, wastewater treatment, food industry, brewery, chemical separation (acids, amines, glycerin and glycols), enzymes ... and in adsorption from the gas phase there are examples of removing toxic compounds Containing sulfur and recycling sulfur, purifying biogas, use in gas masks, etc. Various materials can be used as raw material to make activated carbon. Materials such as walnut, almonds, coconut, pine, corn, etc. In this thesis, a feasibility study on the production... 

    Adsorption and Conversion of Heavy Oil Asphaltene on Composite Nanostructures

    , M.Sc. Thesis Sharif University of Technology Torka Bidokhti, Mostafa (Author) ; Ghotbi, Siros (Supervisor) ; Khodadadi, Abbasali (Supervisor)
    Abstract
    The aim of this project was to upgrade and reduce viscosity of heavy oils by adsorbing of asphaltene on Ni-Mo/CB and converting it into lighter and more valuable gas and liquid compounds. Asphaltene has been extracted from a heavy crude oil sample of Soroush oil field in Iran. After adsorption, Asphaltene conversion to lighter components (gas/liquid) was studied through hydrocracking process. To prepare the support of catalyst, Carbon Black, initially a thermal treatment step under the argon gas atmosphere followed by acid-washing process was performed. Afterward, the catalysts was prepared through dry impregnation method. In order to activate catalyst for hydrocracking, the catalysts has... 

    Kinetics of Adsorption of DBT Sulfur Containing Compound of Gasoline via Nanostructured Adsorbent

    , M.Sc. Thesis Sharif University of Technology Montazeri, Mohammad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Based on the new standards, less than 10 ppm sulfur is allowed for the automotive fuels. This has led researchers to try improving the present conventional methods as well as seeking alternative routes for refinement of the petroleum products so much to comply with the requirements. Since thiophenic fragments such as dibenzothiophene (DBT) are the most durable sulfur compounds in the current hydrodisulfurization method, many studies have been conducted over recent years on how to remove these compounds. In this thesis, the desulfurization of dibenzothiophene from gasoline via adsorption method was studied. In order to carry out the adsorption process, a nanocomposite of graphitic-carbon... 

    Adsorption of Heavy Metals and Various Pollution from Aqueous Solutions by Vegetable Residues

    , M.Sc. Thesis Sharif University of Technology Mohebali, Sanaz (Author) ; Bastani, Dariush (Supervisor) ; Seif-Kordi, Ali Akbar (Supervisor)
    Abstract
    Celery residue modified with H2SO4 was utilized as a low-cost adsorbent for removal of hazardous dyes (methylene blue, malachite green and congo red) and heavy metals (Pb(II) and Cd(II)) from aqueous solution in batch adsorption process. Also, celery residue modified with cationic surfactant (CTAB) to enhance the removal of congo red (anionic dye). The treated and untreated adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The efficacy of dye removal of the modified celery residue was investigated by varying adsorbent dose, contact time, pH, initial dye concentration, and temperature. Experimental data were fitted by three... 

    Lithium Extraction with TiO2 Nanotube Synthesized by Anodizing Method

    , M.Sc. Thesis Sharif University of Technology Taghvaei, Nastaran (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources involving salt-lake brines and sea water. The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake... 

    Microfluidics Desulfurization of Hydrocarbons Components

    , M.Sc. Thesis Sharif University of Technology Ranjbar Koleibi, Amir (Author) ; Mohammadi, Aliasghar (Supervisor) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Microfluidic is a science and technology in which they study the behavior of fluids, control them and design devices or systems with dimensions of tens to hundreds of micrometers. The technology has the ability to design and manufacture macro-scale and micro-scale equipment, such as micro-pumps, micro-valves, micro-filters, micro-mixers, micro-reactors, and other equipment. The benefits of this technology include the use of low sample size, low waste of energy, low power consumption, short response time, high system performance, portability and performance of several operating phases in a compressed piece such as production, isolation and analysis. Also, the very low amount of chemicals and... 

    Theoretical Study of Organic Pollutants Adsorption on Graphene, Doped Graphene and Defective Graphene Nanosheets

    , M.Sc. Thesis Sharif University of Technology Yeganeh, Raziyeh (Author) ; Rahman Setayesh, Shahrbanou (Supervisor)
    Abstract
    Among the xenobiotic compounds, chlorophenols are considered to be as the most dangerous compounds for the environment and living organisms. These compounds are abundantly found in the wastewater of many chemical industry factories. In this research, by using Gaussian software and density functional theory at the level of B3LYP / 6-31G (d, p),the adsorption of molecules such as phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol over graphene, nitrogen and boron doped graphene sheet are studied. The most stable configurations were determined and adsorption energies were calculated. In addition, to understand the adsorption mechanism, electron properties such as state density and... 

    Experimental Investigation of the Effective Parameters on the Removal of the Heavy Metal Ions from Salty Water by Using the Magnetic Nanoparticles Supported on Activated Carbons

    , Ph.D. Dissertation Sharif University of Technology Fatehi , Mohammad Hossein (Author) ; Shayegan, Jalaloddin (Supervisor) ; Goodarznia, Iraj (Supervisor) ; Zabihi, Mohammad (Co-Supervisor)
    Abstract
    In the present thesis, the adsorption ability of the functionalized magnetic nano-particles supported on the walnut and almond based activated carbons was evaluated to prepare the efficient and low cost adsorbents for removal of Pb(II), Cr(VI) and Hg(II) ions aqueous solutions in the presence of salinity. The activated carbons were derived from almond and walnut shell by the physical activation method. The functionalized nano-magnetic activated carbons were synthesized by co-precipitation consisting of AC(almond)@Fe3O4@SiO2-NH2-COOH and AC(walnut)@Fe3O4-NH2-COOH which were modified by the oxygen containing functional groups to enhance the adsorption capacity. The prepared carbonaceous... 

    Copper Adsorption by Nanoadsorbents Based Graphene Oxide from Industrial Wastewater

    , M.Sc. Thesis Sharif University of Technology Pishnamazi, Mohammad (Author) ; Borghei, Mehdi (Supervisor) ; Ghasemi, Shahnaz (Co-Supervisor)
    Abstract
    In this thesis, a novel graphene oxide (GO)/sodium alginate (SA)/polyacrylamide (PAM) ternary nanocomposite hydrogel with excellent mechanical performance has been fabricated through freeradical polymerization of acrylamide (AAm) and SA in the presence of GO in an aqueous system followed with ionically crosslinking of calcium ions. Physical and chemical characteristics of the composite were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling behaviors of the composite hydrogels were investigated under varying conditions of time and pH. The optimized swelling capacity in standard conditions was found to be 1711% per gram of the hydrogel. The... 

    Theoritical Investigation of Metallic Cations and Gas Adsorption on Surface of Carbon Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Safdari, Fatemeh (Author) ; Tafazoli, Mohsen (Supervisor) ; Shamkhali, Amir Nasser (Supervisor)
    Abstract
    Carbon nanostructures are of great importance in scientific and industrial research. Two case of the important two-dimensional carbon nanostructures are graphitic carbon nitride (g-C3N4) and graphene. In the first part of this work, adsorption of important heavy metal cations including Hg+2, Ag+, Cr+3, Pb+2, Cu+2, Ni+2, Cd+2, Tl+, Sb+3, Zn+2 and As+3 on the surface of (g-C3N4) was investigated by density functional theory (DFT). The main purpose of this theoretical study is to evaluate the ability of g-C3N4 to adsorb pollutant cations. The most prominent result of this work was the ability of g-C3N4 for effective adsorption of As+3 and Sb+3 ions from aqeous solutions. Also, another... 

    Removal of Heavy Methal Ions from Wastwater Via Novel Nanocomposite of Biochar/Tio2

    , M.Sc. Thesis Sharif University of Technology Anoosha, Ebrahim (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    To investigate the metallic cation (Ni and Pb) removal performance of the rice barn-obtained biochar which was modified by nitric acid and titanium nanoparticles (TiO2) adsorption tests were conducted in continuous and non-continuous systems. First section addressed the characterization of the synthesized sorbents using field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X ray spectroscopy (EDX) and sorption-desorption porosity analysis (BET). In the second section, the effect of different parameters such as pH, initial concentration of the metallic ions, temperature, time, sorbent content, ionic... 

    Synthesis of Graphene by New Methods, and its Application for Adsorption of Cobalt

    , M.Sc. Thesis Sharif University of Technology Faham Mofrad, Ali (Author) ; Outokesh, Mohammad (Supervisor) ; Shafiekhani, Azizollah (Supervisor)
    Abstract
    In this study graphene and graphene adsorbent for the Co2+ ion were created from sodium phenoxide and calcium phenoxide, respectively, using the chemical vapor deposition method, and their chemical, physical, and morphological properties were investigated using FT-IR, UV, XRD, Raman, TEM, FE-SEM, and XPS. The results suggest that the optimum reaction condition for synthesizing mono-layer and multi-layer graphene is the 750 °C temperature for 30 min. The Co2+ adsorbing properties of the synthesized graphene adsorbent from calcium phenoxide was investigated. The investigation of solvation properties suggests insolubility above 650 °C and the kinetic data suggest the rapidness of the Co2+... 

    CFD Modeling of Ammonia Release and Water Curtain for Mitigation

    , M.Sc. Thesis Sharif University of Technology Khajehpour, Amir Hossein (Author) ; Rashtchian, Davoud (Supervisor)
    Abstract
    The release of toxic materials causes tragic accidents every year. There are various techniques in order to mitigate the release effect of these materials such as Application of air jets, steam curtains and water curtains. This study presents numerical calculations to reproduce the continuous ammonia release dispersion with and without the mitigating influence of a downwind water curtain using computational fluid dynamic (CFD) software ANSYS Fluent 15.0. The RNG model coupled with Lagrangian discrete phase model (DPM) was used to simulate the dilution effectiveness of the water curtain system. The ammonia absorption was taken into account by means of user-defined functions (UDF). The... 

    Repeatability of Lithium Adsorption and Desorption on TiO2 Nanotubes from Brines

    , M.Sc. Thesis Sharif University of Technology Safarzadeh, Amin (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Today, recycling lithium as a valuable metal from brine plays an important role in various applications such as battery manufacturing, computers, aerospace and automobiles. Among the aqueous methods available for the extraction of the lithium element in brines, ion exchange by TiO2 nanosorbents is one of the most efficient methods. In this study, first the titanium dioxide nanotubes were well synthesized by anodizing method and the nanograss created after the anodizing process were completely eliminated. Then, the effect of three cathodes of aluminum, graphite and stainless steel in order to select the best cathode and achieve a regular morphology as well as their replacement with platinum... 

    Theoretical Study of Adsorption of Organic Pollutants on Polypyrrole with Density Functional Theory (DFT)

    , M.Sc. Thesis Sharif University of Technology Rezaee, Mozafar (Author) ; Rahman Setayesh, Shahrbanoo (Supervisor)
    Abstract
    Phenolic compounds, which are one of the most dangerous compounds for the environment, are present in many effluents of various industries such as petrochemicals and pharmaceuticals, and the need to eliminate these compounds is increasingly felt. In this study, adsorption of three compounds of para-chlorophenol, para-nitrophenol and hydroquinone on polypyrrole adsorbent in the form of neutral, charged, copolymer with polyaniline and phosphorus-doped have been investigated using density functional theory (DFT). Calculations are performed at two levels of b3lyp/6-31+G(d,p) and wb97xd/631+G(d,p) for two different orientations of adsorbate molecules that the correlation-exchange function wb97xd... 

    Experimental and Numerical Study of SO2 Adsorption/desorption by NH2-MIL-53 Metal-organic Framework (MOF)

    , M.Sc. Thesis Sharif University of Technology Noushadi, Atefeh (Author) ; Fotovat, Farzam (Supervisor) ; Vahidi, Mahdi (Co-Supervisor) ; Hamzelouyan, Tayebeh (Co-Supervisor)
    Abstract
    Sulfur dioxide is known as an acidic gas and one of the standard pollutants in determining air quality. This gas mostly enters into the atmosphere by flue gas causing many environmental problems. In order to remove this gas, various methods are used. One of the suitable methods to reduce the emission of this pollutant in low concentrations is the use of Metal-Organic Frameworks (MOF) as an adsorbent. One of these Metal-Organic Frameworks is NH2-MIL-53(Al) that owing to its relatively good stability under wet and acidic conditions, has been chosen to adsorb sulfur dioxide in this research. In most studies on SO2 adsorption, often MOFs with a long synthesis time, high synthesis cost, and/or... 

    QCM Investigation of Different Depositing Factors Effects on the Asphaltene Deposition

    , M.Sc. Thesis Sharif University of Technology Roshani, Mohammad Mahdi (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Asphaltene deposition, the heaviest and most polar component of crude oil, which causes great economic damage inside the reservoir, near wells, pipelines and well equipment, is an important challenge in the production of oil reservoirs. The main purpose of this study is to prob the adsorption kinetics and the mechanism of asphaltene adsorption on the metal surface by a quartz crystal microbalance device under different conditions of temperature, flow rate and degree of asphaltene instability. In this study, indirect uv-vis spectroscopic method was used to determine the onset of asphaltene precipitation, then experiments were designed using Taguchi method. A new QCM device has been designed... 

    Kinetics and Mechanism Study of Chemical Pollutant Adsorption Using Organic Ligands Modified Nano-adsorbents

    , M.Sc. Thesis Sharif University of Technology Abdollahi Zad, Ghazal (Author) ; Golami, Mohammad Reza (Supervisor)
    Abstract
    Among various methods for purifying water from dyes, adsorption takes advantage of simplicity, high efficiency, no secondary-pollution, and inexpensiveness. In this project Halloysite nanoparticles were applied to prepare a series of modified polyAcrylamide- quince seed gum hydrogels (QS/PAAm/Haln). The obtained hydrogels demonstrated improved efficiency as adsorbent in removing methylene blue (MB) from aqueous media. The structure of the prepared hydrogel nanocomposites were identified by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, Fourier-transform infrared spectroscopy, scanning electron microscope and energy-dispersive X-ray spectroscopy. Kinetics, thermodynamic,... 

    Investigation of Operating Parameters for Thorium Adsorption from Wastewater by Using of Radiated Grafting Polymeric Adsorbents in Packed Bed Column

    , M.Sc. Thesis Sharif University of Technology Kazzazi, Sina (Author) ; Outokesh, Mohamad (Supervisor) ; Torab Mostaedi, Meysam (Supervisor) ; Asadollahzadeh, Mehdi (Co-Supervisor) ; Torkaman, Rezvan (Co-Supervisor)
    Abstract
    Today, the pollution of heavy metals in wastewater and surface waters, which is a global environmental problem, has increased with the expansion of various industrial activities. Heavy metals cause serious health problems due to their accumulation in human and animal tissues. Thorium, is a radioactive element with an atomic number of 90 that is widely used in the optics, aerospace, metallurgy and chemical industries, in the manufacture of high-strength alloys, in UV photocells, and especially in the nuclear industry. The primary sources of radioactive wastewater include nuclear power plants, nuclear energy industry research centers, medical institutions, industrial production, universities,... 

    Synthesis and Characterization of Polymer Nanofibers Modified by Using of Radiated Grafting for Adsorption of Molybdenum Ions from Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Fayazi, Mohammad Reza (Author) ; Outokesh, Mohammad (Supervisor) ; Asadollahzadeh, Mehdi (Supervisor) ; Torkaman, Rezvan (Co-Supervisor) ; Torab Mostaedi, Meysam (Co-Supervisor)
    Abstract
    Molybdenum is one of the important elements of the intermediary metal with atomic number 42, which is used in various industries, but among the important uses of this metal in the nuclear industry, we can mention the presence of this element in the production of yellow cake as an impurity and also as a precursor for the production of radiopharmaceuticals. It is one of the impurities that remain in all stages of yellow cake production along with uranium, and the high presence of this element causes the centrifuges to become unbalanced during the injection of "U" "F" _"6" gas, and on the other hand, technetium, the main ingredient in the production of radiopharmaceuticals, It comes from the...