Loading...
Search for:
defect
0.143 seconds
Pair Interaction Between Colloidal PartIcles in Nematic Liquid Crystal: A Finite Element Study
, Ph.D. Dissertation Sharif University of Technology ; Ejtehadi, Mohammad Reza (Supervisor)
Abstract
Structure of colloidal particles in anisotropic solvent with long-range orientational ordering, such as nematic liquid crystals, has attracted great attention in science and technology. The nematic director is distorted from its uniform orientation in the bulk due to anchoring on the surface of the colloidal particles. These elastic distortions create topological defects around the particles and induce long and short range anisotropic interactions between the particles. Depending on the anchoring type and the colloidal geometry, the particle-defect can induce a long-range dipolar-dipolar, quadrupolar-quadrupolar and/or dipolar-quadrupolar potential.Experimentally, the colloidal interactions...
Multiscale Investigation of Plastic Behavior in Crystalline Metals
, M.Sc. Thesis Sharif University of Technology ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Advisor)
Abstract
In this study, a modern multiscale sequential molecular dynamics (MD) – finite element (FE) coupling method is proposed to represent the role of grain boundary (GB) planar defect on mechanical properties of crystalline structures at various temperatures. Different Grain Boundary misorientation angle is considered and the temperature varies from 0 up to 800 K. The embedded-atom method (EAM) many-body interatomic potential is implemented to consider pairwise interactions between atoms in the crystalline structures with face-centered-cubic (FCC) lattice structure at different temperatures. In addition, the Nose-Hoover thermostat is employed to adjust the fluctuation of temperature. The atomic...