Loading...
Search for: denoising
0.052 seconds

    Modeling and Data Mining of Partial Discharge in Power Transformer Solid Insulation

    , M.Sc. Thesis Sharif University of Technology Jahangir, Hamid (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    Transformers are one of the most important equipments in transmission and distribution networks. Transformer unplanned outages have severe impacts on the continuity of power system operation. To improve the reliability of transformers and to achieve an optimum operation cost, online condition monitoring of transformers is inevitable. Information about the quality of the transformers insulation system is known as the best parameter to be monitored in a transformer. Since partial discharge signals are initiated long before the beginning of a severe damage, partial discharge monitoring and its evaluation canbe employed to warn the operator.Data mining on the partial discharge signals extracts... 

    Parameter Reduction of Wavelet Transformation for Increasing the Accuracy of Integrated and Automatic History Matching

    , M.Sc. Thesis Sharif University of Technology Dehghani, Amin (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Bozorgmehry, Ramein (Supervisor)
    Abstract
    One of problemsin an inverse problem like history matching is there is no unique solution. This means that maybe several diferent permeability maps can correctly reproduced the history of fieldt but there is no garanttee that these maps accurately predidct reservoir production behavior. One way to face and deal with this problem, except manipulation of solution and optimization algorithm (inverse modeling) is to use other data sources like seismic data, Variogram, pore volume, and fracture density or any other parameter obtained from geostatistical investigations.Multi-resolution wavelet analysis can be an appropriate tool to gather the necessary information to characterize the inverse model... 

    ECG Denoising by Deterministic Approaches

    , M.Sc. Thesis Sharif University of Technology Taghavi Razavizadeh, Marjaneh (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    The goal of the research presented in this thesis is removing noise from electrocardiogram (ECG) signals. The electrocardiogram is a test that measures the electrical activity of the heart. The information obtained from an electrocardiogram can be used to diagnose different types of heart disease. It may be useful for seeing how well the patient is responding to treatment. The extraction of high resolution ECG signals from noisy measurements is among the most tempting open problems of biomedical signal processing. Extracting useful clinical information from the real (noisy) ECG requires reliable signal processing techniques. Numerous methods have been reported to denoise ECG signals based on... 

    Interictal Noise Cancellation Based on Combination of ICA-based and Wavelet-based Denoising Approaches

    , M.Sc. Thesis Sharif University of Technology Zakizadeh, Mohammad (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    Interictal EEG signals are very critical in diagnosis of epilepsy. Analysis of interictal EEG signals is very challenging due to contamination by various undesired signals like background EEG, muscular activity, noise, etc. Thus denoising of interictal signals has been an active research field in recent years. Primary purpose of this thesis is to denoise interictal EEG signals by using different combinations of ICA-based and wavelet denoising approaches. Then a new direction is pursued by using Morphological Component Analysis (MCA) which is a method for solving source separation problems based on morphological diversity of sources. Afterward MCA is modified by considering more prior... 

    Rigid Registration using Sparse Representation Descriptor in MR Images

    , M.Sc. Thesis Sharif University of Technology Ebrahim Abdollahian (Author) ; Manzuri-Shalmani, Mohammad Taghi (Supervisor)
    Abstract
    In recent years, sparse representation has had a variety of applications in computer vision such as noise reduction, image reconstruction, classification and dimension reduction. In this project, we aim to provide a method of matching the keypoints obtained from the Scale Invariant feature Transform (SIFT) algorithm. In this algorithm is used descriptor instead of intensity . The proposed method, first, extracts the salient points from the images and learns a dictionary-based descriptors corresponding to the points. Then, using the dictionary, it obtains the sparse coefficients for each salient point by which, it determines the correspondence of the salient points in the two images using SVD... 

    EEG Noise Cancellation by Stochastic and Deterministic Approaches

    , M.Sc. Thesis Sharif University of Technology Salsabili, Sina (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    Noise contamination is inevitable in biomedical recordings. In some cases biomedical recordings are highly contaminated with artifacts which make the effective recovering process hard to achieve. Many different methods have been proposed for artifact removal from biomedical signals but introducing an effective method which can present valuable data for medical analysis, is still an ongoing process.
    This dissertation focuses on inter-ictal EEG denoising approaches including ICA-based and EMD-based methods and different combination of these methods. These methods are tested on simulated epileptic recordings which are contaminated with real muscle artifact and EEG signal. The denoised... 

    Inter-Beat and Intra-Beat ECG Interval Analysis Based on State Space and Hidden Markov Models

    , Ph.D. Dissertation Sharif University of Technology Akhbari, Mahsa (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    Cardiovascular diseases are one of the major causes of mortality in humans. One way to diagnose heart diseases and abnormalities is processing of cardiac signals such as ECG.In many of these processes, inter-beat and intra-beat features of ECG signal must be extracted. These features include peak, onset and offset of ECG waves,meaningful intervals and segments that can be defined for ECG signal. ECG fiducial point (FP) extraction refers to identifying the location of the peak as well as the onset and offset of the P-wave,QRS complex and T-wave which convey clinically useful information. However, the precise segmentation of each ECG beat is a difficult task, even for experienced... 

    Epileptic Signal Denoising Using Morphological Component Analysis Based on Dictionary Learning

    , M.Sc. Thesis Sharif University of Technology Ilmak Foroosh, Arman (Author) ; Shamsollahi, Mohammad Bagher (Supervisor)
    Abstract
    The prevalence of epilepsy in the world and the need for surgery to treat patients have made it essential to locate the site of epilepsy before surgery. One method is to apply source localization algorithms to the EEG signals of epileptic patients in the ictal and interictal periods. However, because these signals are contaminated with various noises, they are challenging to interpret and require noise cancellation. Therefore, various methods have been proposed to eliminate the noise. Among these methods, a new method recently used to remove noise from the epileptic signal is Morphological Component Analysis (MCA). This method uses the basic concepts of sparse representation of signals to...