Loading...
Search for: hypoxia
0.08 seconds

    Deling and Simulation of Human Lung

    , Ph.D. Dissertation Sharif University of Technology Abbasi, Zeinab (Author) ; Bozorgmehry Boozarjomhery, Ramin (Supervisor)
    Abstract
    The bronchial tree consists of two main parts: conducting airways and respiratory airways. Parametric Lindenmayer System (L-System) has been used for modeling of the structure. The conducting airways are divided into two parts: central region consisting of trachea up to segmental bronchi and bronchioles located in the bronchopulmonary segments. The boundary of these segments has been found by image processing techniques. Stochastic Parametric L-system has been used for modeling of acinar region. To find the characteristic properties of conducting airways and respiratory bronchioles, an intelligent method has been developed. The parameters of the model are either age dependent or... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Simulation, Design and Fabrication of Microfluidic Systems for the Enrichment of Cancer Stem Cells and the Pharmacological Tests

    , M.Sc. Thesis Sharif University of Technology Barisam Haghiri, Maryam (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Kashaninejad, Navid (Co-Supervisor) ; Trung Nguyen, Nam (Co-Supervisor)
    Abstract
    Cancer is one of the leading causes of death worldwide, and despite all the advances in medical science, there isn't any definitive cure for it, yet. Researchers have recently considered the presence of cancer stem cells with the capability of tumorigenesis, invasion, metastasis, self-renewal, etc. as the main cause of inefficiency of cancer treatment. It means current therapies are able to kill the tumor mass, but they are not successful in confront of cancer stem cells and this causes the disease to recur a while after the apparent recovery. To study these specific cells, in this project, first the population of cancer stem-like cells was increased in the cancer cell mass, in other words,...