Loading...
Search for: microchannel
0.157 seconds

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Numerical Modeling of Electroosmotic Flow of Viscoelastic Fluids in Hydrophobic Microducts

    , M.Sc. Thesis Sharif University of Technology Abdoli Farzaneh, Hassan (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    The integrated development of small-scale electronic and mechanical systems has drawn attention, since they lead to increase in speed and decrease in volume of industry dimensions in the manufacturing sector. That is why microelectromechanical systems are highly considered. MEMS are widely used in Microfluidic systems that can be used in medicine, biology and drug injection. Due to the fact that consistent fluid velocity is necessary in biological applications, electroosmotic flow is more important than ever. To investigate the behavior of biofluids, Newtonian models cannot be used and it is required to use models that predict the behavior of these fluids accurately. In this research... 

    Drag Reduction Using Geometrically Structured Surfaces for Non-newtonian Multi-phase Fluids

    , M.Sc. Thesis Sharif University of Technology Javaherchian, Javaneh (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    With the advancement of the industry, microscale devices use due to its unique characteristics. On the other hand, it is essential to find ways to reduce drag inside microchannels because of The importance of energy. One of the methods is to optimize the contact surface using structured geometric surfaces. These hydrophobic surfaces reduce drag by trapping the air in roughness and creating a two-phase flow. The purpose of this project is to reduce the drag within the microchannel using structured geometric surfaces for non-Newtonian and multiphase flows. In most previous studies, with simplification, Newtonian and two-phase flows have been investigated. While most industrial fluids show... 

    Simulation of Flow Drag Reduction through Air Injection from the Porous Wall

    , M.Sc. Thesis Sharif University of Technology Boyerahmadi, Amirhossein (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    The effect of using backpressure of air injection in a microchannel on internal flow pressure drop were investigated in this study. Multiphase flows are commonly encountered in gas and oil industries. Flow fields in production operations are often complex and include multiphase flows of gas and liquid. Previously, because of their complex nature, these flow patterns have been mostly investigated only experimentally and empirical correlations based on the experimental data. From another point of view, it is almost impossible to experimentally realize all the flow conditions for each of the flow patterns. Nowadays computer facilities provide the tool to construct and use large-scale... 

    Numerical Investigation of Surface Wettability Effect on Liquid-Liquid Two-Phase Flow Heat Transfer in Microchannels

    , Ph.D. Dissertation Sharif University of Technology Moezzi, Mahsa (Author) ; Kazemzadeh Hannani, Siamak (Supervisor) ; Farhanieh, Bijan (Co-Supervisor)
    Abstract
    It is aimed in this study to numerically investigate the effect of contact angle on the heat transfer coefficient in oil-water two-phase flow. For this purpose, the finite element method (FEM) is used to solve the unsteady Navier-Stokes and energy equations. The level set method is also used to capture the interface between the phases. In the first part of the study, two-phase flow of the water and calibration oil is considered in a T-junction geometry at contact angles of 5°, 40°, and 75°. It is observed that the flow patterns formed in the microchannel depend on the initial flow condition which results in the hysteresis phenomenon. Investigating the effect of wall contact angle on the... 

    Analysis of Heat Transfer and Fluid Flow in Partial Porous Microchannel

    , M.Sc. Thesis Sharif University of Technology Shamsoddini Lori, Mohammad (Author) ; Nouri Brorujerdi, Ali (Supervisor)
    Abstract
    In this study, heat transfer and fluid flow inside a rectangular microchannel with partial porous media is simulated numerically. Darcy-Brinkman-Forchheimer equations are used to model the porous media. The effect of height of porous media, permeability (Darcy number), porosity and inlet velocity (Reynolds number) on Hydrodynamic and heat transfer performance are examined. At different values of height of porous media 0.2, 0.4, 0.6, 0.8, and 1 mm the Nusselt number of microchannel are 1.72, 1.78, 1.86, 1.94, and 2.02 compared to the microchannel without porous media. And the porous drop are 1.09, 1.2, 1.49, 1.76, and 2.15 compared to the microchannel without porous media. And FOM are 1.78,... 

    Production of Liquid Metal Micro-droplets and Electrical Control of their Size and Rate of Formation

    , M.Sc. Thesis Sharif University of Technology Asiabi Mollahaji, Arezoo (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    The use of liquid metal droplets due to their high electrical and thermal conductivity are used in various industries today. One of the methods of producing these micro-droplets is the flow focusing method, which is widely used to produce integrated and monodispersed droplets. Liquid metals have high surface tension and these micro-droplets are formed only if there is sufficient shear force between the liquid metal and a continuous fluid phase. In the past, they used several different methods such as pressure fluctuations and changes in continuous phase flow rate to control the shear force and produced polymer, gas, etc. micro-droplets.In this research, use the electric potential to control... 

    Dynamics and Heat transfer of Two-phase Non-Newtonian Fluids in Superhydrophobic Channels

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Arghavan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    When the fluid passes through the microchannel, some energy is lost due to drag force and pressure drop. One of the methods used in the last few decades to optimize energy consumption is creating superhydrophobic surfaces in microchannels. These surfaces, with their features such as increasing the contact angle and reducing the contact angle hysteresis, can reduce energy loss, which is due to the presence of unevenness on the surface, and by trapping air and creating a two-phase flow, they reduce the drag force. On the other hand, the air trapped inside these irregularities will also affect the heat transfer of the passing fluid in the microchannel, which by creating resistance in the... 

    Simulating Flow over Nanoparticles through Microchannels Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Setayeshgar, Alireza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Novel manufacturing technologies in micro scales, such as micro machining, guide us through constructing micro scale systems known as MEMS. These systems have a wide range of applications, from fabrication of electrostatic, magnetic, pneumatic sensors and actuators to micro mechanical gears and motors. Also, MEMS applications involve the manipulation of one or more fluids, known as microfluids. Simulation of flow through microchannels over nano particles has important applications in solid particles transport. In this flow, the rarefaction phenomenon will affect the flow behavior and its subsequent impacts such as aerodynamic drag forces. In this work, we use the Lattice Boltzmann method... 

    Developing a Parallel DSMC Algorithm for Simulating Flow in Micro-Nano Propulsion Systems

    , M.Sc. Thesis Sharif University of Technology Mirjalili, Vahid (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    With the rapid development of mico-nano propulsion systems in micro-spacecrafts and micro-sattelites, precise investigation of flow field in these devices has become necessary. Micro propulsion systems usually have a thrust in order of mili Newton, and they can be used for maneuvers of spacecrafts with mass of less than 10 kg. Micro propulsion systems are usually classified according to their thrust generation mechanism to different classes like cold gas, and chemical propulsion systems. Cold gas micro propulsion systems obtain their energy from thermodynamic expansion of gas and not by combustion. If the flow fiel dimensionare comparable to mean free path, rarefaction effects are observed... 

    Experimental Study on Two-Phase Flow Characteristics in Micro-Channels

    , M.Sc. Thesis Sharif University of Technology Yavari, Hadi (Author) ; Nouri, Ali (Supervisor)
    Abstract
    The present study provids an experimental investigation on two-pase flow characteristics in microchannels. Experiment were conducted with a mixture of air and water in horizontal circular pyrex channel with 400µm inner diameter. The pressure drop and flow rates of the liquid and gas were measured using new method and images of the flow patterns recorded by high shutter speed camera. The gas and liquid superficial velocity ranges were 0.025-12.5m/s and 0.016-3.6m/s, respectively. The flow pattern map is developed from the observed flow patterns based on phases superficial velocity as wel as We numbers of liquid and gas phases. The flow pattern map is compared with those of larger channels.... 

    Numerical Simulation of Turbulent Flow Heat Transfer in the Entrance Region of Microchannels

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Arman (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In this thesis the steady state convective heat transfer for turbulent, two-dimensional, incompressible gas flow in a circular microchannel under slip flow and temperature jump conditions is numerically investigated by means of finite volume scheme. The low Reynolds number k-ε turbulence model is employed using a new boundary condition for turbulent kinetic energy at solid surface. To calculate variables at control volume surfaces in the axial direction upwind differencing scheme and in the radial direction central differencing scheme are used. Rhie-Chow interpolation technique is used to prevent pressure field oscillations. The set of discrete equations are solved using SIMPLE Algorithm. In... 

    A ¬High Order Accurate Numerical Solution of Incompressible Slip Flow in Microchannels with Heat Transfer by Using Artificial Compressibility Method

    , M.Sc. Thesis Sharif University of Technology Mohafez, Mir Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order accurate numerical solution of steady incompressible slip flow and heat transfer in 2D microchannels is presented. The numerical method used is an alternating direction implicit operator scheme which is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. To stabilize the numerical solution, numerical filters are used. The present methodology considers the solution of the Navier-Stokes equations with¬ employing different slip boundary condition¬¬ (Maxwell,¬ ¬¬Hyperbolic tangent function of Knudsen number¬ and Beskok slip models)¬ ¬¬on the wall to model... 

    Electroosmotic Flow in Microchannels

    , M.Sc. Thesis Sharif University of Technology Lesani, Mostafa (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    The present study examines both Direct Current (DC) and Alternating Current (AC) electroosmotic flows in a parallel plate microchannel. The method consists of a central finite difference scheme for spatial terms and a forward difference scheme for the temporal term. Asymmetric boundary conditions are assumed for Poison-Boltzmann equation used to determine the electric double layer (EDL) potential distribution. The potential distribution is then used to evaluate the velocity distribution for both DC and AC electroosmotic flows. The velocity distributions are obtained by applying slip boundary conditions on the walls to account for probable hydrophobicity of the surfaces. After determining the... 

    Experimental Investigation of Nano Particle Effect on Heat Transfer in a Micro Heat Exchanger

    , M.Sc. Thesis Sharif University of Technology Jafarpoor Chekab, Hamideh (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Modern microelectronic systems generate a large amount of heat which must be transferred out of the system without excessive temperature rise. Conventional forced air convection and microchannel cooling plates have reached their performance limits Nanofiuids are proposed as an innovative way to solve the problem. A nanofiuid is nanoscale solid particles dispersed in a traditional heat transfer liquid. Some studies show an anomalous increase in the thermal conductivity for stationary nanofiuids. However, there are only few previous studies on the convection heat transfer rate and viscosity of nanofiuids. Both convection and stationary measurements of the thermal conductivity are widely... 

    Fabrication of Ferrofluidic Micropump

    , M.Sc. Thesis Sharif University of Technology Ashouri, Majid (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Said (Supervisor) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    In this project, two Ferrofluidic micropumps that do not need any mechanical moving parts are presented. These micropumps are including simple microchannels containing magnetic fluid plugs that are used as flow actuator and the on/off valve. Using external magnetic field actuation in this type of micropumps, the magnetic fluid would have continuous motion in a channel with micrometer dimensions that would provide the main fluid to be pumped. Although the plug of magnetic fluid has surface contact with operative fluid, but considering its specific features, it would not compine with the pumping fluid. These micropumps may be used to pump the fluids or gases. The outcomes of the investigation... 

    Experimental Study of Microbubbles Generation as a Contrast Agent in Blood, to Determine the Blood Flow by Echo-PIV Method

    , M.Sc. Thesis Sharif University of Technology Salari, Alinaghi (Author) ; Shafiee, Behshad (Supervisor)
    Abstract
    Today microbubbles are broadly used as ultrasound contrast agents. These bubbles enhance the image resolution of B-mode pictures. Flow focusing in microchannels could provide us the goal of one-size bubbles generation. Microbubbles could use as tracers in Echo_PIV method to determine the velocity profile in main body vessels such as carotid. In this paper we introduce a new production method to fabricate a low-cost microchannel for preparing Microbubble contrast agents (less than 50 microns) by using some surface active agents and a viscosity enhancing material to obtain appropriate Microbubbles with desired life time and stability for any in vitro infusion for velocity measurement. By... 

    Numerical Investigation of Instabilities of Flow in Micro-fluid

    , M.Sc. Thesis Sharif University of Technology Yazdi, Hossein (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    This research concerns investigating the behavior of two-phase flow in the inlet and outlet of the microchannels.Both the droplet based and the continuous microfluidics are considered. For the continuous system whenthe minor fluid enters the microchannel, due to ratio of viscosity of two fluids, viscous folding occurs.Viscous folding phenomena is similar to the buckling phenomena in solids.This means that the viscosity of the fluid, which is applied to two sides of the fluid layer, causes folding the fluid layer and changing the shape of it. For the study we employ a VOF based numerical routine. In order to verify numerical results, the grid and the time step independenciesare checked. In... 

    Simulation of two-Dimensional Supersonic Flow in Slip Regime in Microchannel with Finite Difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Barootiha, Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the simulation of two-dimensional supersonic flows through microchannels in slip flow regime is performed using a lattice Boltzmann model (LBM). Traditional LB models have been used to simulate incompressible fluid flows and there are not suitable for modeling compressible or thermo-fluid flows. Herein, a recently developed LB model, namely, the finite difference lattice Boltzmann method (FDLBM), is employed to simulate compressible flows with embedded shocks. In this model, one can select particle velocities independently from the lattice configuration, and therefore, a correct and numerically stable multispeed thermal model by adopting more isotropic particle velocities can... 

    Simulation of Flow and Mass Transfer in Microfluidic Systems of Human Body

    , Ph.D. Dissertation Sharif University of Technology Saadatmand, Maryam (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor) ; Farhadi, Fathollah (Supervisor) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    The effects of gravity and inertia dominate our experiences of the physical world. But as systems are reduced in size, phenomena such as diffusion, surface tension and viscosity become ever more important; at the microscale they can dominate and result in a world that operates very differently from the macroscopic world. Kidney is one of the vital organs in which fluid and mass transfer occur between blood flow in microvessels and urine in microchannels called nephron. The present work is aimed at applying microchannel theory to study renal system. First, a n efficient numerical orthogonal collocation method has been employed to solve the steady-state formulation of electrolyte transport in...