Loading...
Search for: microstructure
0.184 seconds

    Study of Direct Joining of Nanostructured-Zirconia to 430L Stainless Steel Produced by Co-sintering Process

    , Ph.D. Dissertation Sharif University of Technology Dourandish Yazdi, Mahdi (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    In this study, the joint of co-sintered zirconia/stainless steel is investigated. To this end ZrO2-3mol%Y2O3 (TZP) and 430L stainless steel powders were utilized. The joining parameters of co-sintering in zirconia/metal were studied. In order to study the microstructure, diffusion and probable reactions at the joint boundary, HRSEM, HRTEM, EPMA and micro-focused XRD methods were employed. Shear strength of the joint was also measured. Finite element simulation of residual stresses and thermodynamic studies are utilized in the next step to analyze the experimental results. It is found that the direct joining of zirconia to 430L stainless steel is feasible by co-sintering at 1350 °C under low... 

    An Investigation into the Microstructure and Mechanical Properties of Rheoforged A356 Alloy After Severe Plastic Deformation

    , M.Sc. Thesis Sharif University of Technology Dodangeh, Abbas (Author) ; Kazeminezhad, Mohsen (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    Several studies are already on severe plastic deformation of wrought and cast aluminum alloys. Among these studies, no evidence of applying severe plastic deformation on the structure of rheocast or rheoforgedaluminum alloy can be found. So, in this research A356 alloy with globular structure was achieved using electromagnetic stirring and rheoforging. The optimum condition of globular structure with high sphericity was achievedafter holding the produced structure in semi-solid state for 10 min. Then, the effect of severe plastic deformation on mechanical and microstructural properties of this alloy and cast alloy was studied. The results show that with applying 3 passes of multidirectional... 

    Study of Microstructure and Mechanical Properties of Aluminum Bronze Joint by Friction stir welding

    , M.Sc. Thesis Sharif University of Technology Saboktakin Rizi, Mostafa (Author) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    Microstructural characteristics and mechanical properties of a friction stir welded cast Aluminum Bronze (Cu–9Al–1Fe), produced through sand casting method, have been investigated in this study at tool rotation of 850–1500 rpm and traverse speed of 50–100mm/min. The study also describes results obtained from microstructure evolution (optical microscopy and Clemex image analysis software) and mechanical properties of Aluminum Bronze welds produced by FSW process. Refinement of the primary coarse cast microstructure and elimination of the defects in base metal due to porosity and casting was seen clearly after friction stir welding. Microstructure of the stir zone was divided into four... 

    Physical Modeling of Metal Matrix Composite Sheets With Second Phase Manufactured by Accumulative Roll Bonding (ARB) of Al-Ni Laminations

    , M.Sc. Thesis Sharif University of Technology Rezaei Anvar, Behrouz (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Metallic multilayer composites provide remarkable mechanical, electrical and magnetic properties. These kinds of composites have been recently processed by severe plastic deformation (SPD) methods. Accumulative roll bonding (ARB) is one of the SPD processes in which accumulation of strain by repeating cycles, leads to the ultra fine grained materials. The goal of this research is manufacturing of Al/Ni composite sheets by ARB process considering the effects of thickness and number of initial sheets on their mechanical properties and microstructures. The initial composites were produced by commercially pure Al and Ni as the matrix and the reinforcement, respectively. Thickness of the Al... 

    Investigations on Microstructure and Mechanical Properties of Mg Based Nanocomposite Fabricated by Friction Stir Processing

    , Ph.D. Dissertation Sharif University of Technology Azizieh, Mahdi (Author) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    The aim of this research is to fabricate Mg based nanocomposite by friction stir processing and investigation of the process parameters on the microstructure and mechanical properties of the nanocomposite. In order to this aim, alumina nanoparticles as reinforcement were poured in the groove, with 5mm depth, and due to rotation of friction stir tool, these nanoparticles were mixed with the matrix and nanocomposite was produced. To reach to the best condition in nanocomposite fabrication, the effect of friction stir processing parameters such as, tool rotation speed, tool design, number of friction stir passes, cooling media and reinforcement percent on microstructure, hardness, tensile... 

    Conduct an Investigation on Nanostructure of Al-20Si-5Fe Alloy, Produced by Melt Spinning Process and Observation of Mechanical-Metallurgical Properties

    , M.Sc. Thesis Sharif University of Technology Azadi, Reza (Author) ; Davami, Parviz (Supervisor)
    Abstract
    In this study, Al-20Si-5Fe ribbons produced by melt-spinning method. Nanostructure and growth morphology of rapidly solidified products explored using optical microscope, scanning electron microscope and x-ray diffraction. Microstructural investigations depicted two distinctive zones of featureless (faceted morphology) and dendritic. In addition, no intermetallic phases could be observed in the rapidly solidified ribbons in comparison with coarsed and needle shaped intermetallic phases of as cast alloys which it demonstrates the extension of solid solubility of Si and Fe in the matrix and consequently intermetallics formation was hindered by higher cooling rates. Subsequently, ribbons... 

    Effect of Equal Channel Angular Pressing(ECAP) Parameters on Microstructure and Mechanical Properties of Strip Samples of AZ31 Mg Alloy

    , M.Sc. Thesis Sharif University of Technology Arab, Mohammad (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Equal Channel angular pressing (ECAP) is one of the most applicable Severe Plastic Deformation (SPD) Procedures which results in improvement of strength and ductility through grain refinement and an appropriate texture development. In this study, in order to achieve a proper orientation and microstructure, ECAP was performed in different routes and temperatures up to 4 passes on AZ31 magnesium alloy. Microstructure and mechanical properties were studied. X-ray diffraction analysis was performed to study the basal orientation variation and calculation of sub-grain size. In addition, cold rolling at room temperature was done on the fourth pass specimens, in order to study the effect of ECAP... 

    Properties of the Cobalt Base Superalloys and the Effect of Remelting on Microstructure and Chemical and Physical Behavior

    , M.Sc. Thesis Sharif University of Technology Mokhtar, Fatemeh (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    Because of the importance and value of Superalloy, In this research has been treid to remelting scrap of gas turbine blades cobalt based Superalloy X-45, In order to restore it to the cycle of consumption. For this purpose, scraps were remelted under different conditions, for example changing the atmosphere, changing slag composition, changing type of the furnace for remelting and changing time of remelting process. Then in order to investigate effect of the above factors, microstructure were studied by optical microscope and Scanning Electron Microscopy (SEM) And also in order to investigate changings of element composition, chemical analysis were examined by atomic absorption analysis and... 

    Influence of Rejuvenation Treatment on Microstructure and Creep Properties of Damaged IN738LC Superalloy

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Shahabeddin (Author) ; Nategh, Saeed (Supervisor) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The goal of the present study is to investigate the effect of rejuvenation treatment on microstructure and creep properties of damaged IN738LC superalloy. Virgin alloy was damaged by interrupted creep tests at 926°C and 170 MPa for 100, 200 and 250 hours. The results obtained showed that damaging the virgin alloy by interrupted creep tests resulted in microstructural deterioration (consisting of coarsening of ' precipitates, formation of continuous films of ' on grain boundary regions and formation of transition zone around MC carbides) and, consequently, degradation of creep properties. Rejuvenation treatment was carried out with the purpose of healing the damaged alloy and restoration of... 

    An Investigation into the Effect of Solidification Rates and Melt Filtration on the Tensile Properties of A356 Castings

    , M.Sc. Thesis Sharif University of Technology Khakzad Shahandashti, Arash (Author) ; Varahram, Naser (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    A356 castings show different characteristics during tensile tests. This behavior emanates from casting defects such as pores and double oxide films. These defects lead to quick and unexpected failure during tensile tests. Secondary dendrite arm spacing of primary α phase, eutectic phase, volume fraction of pores and oxide films are the characteristics that affect the tensile property. N this study the effect of changing two characteristics on the microstructural constituents is investigated. The first one is cooling rates, and the second one is melt filtration by using different filter in the runner. According to the tensile properties, the effect of these changes on tensile properties... 

    , Ph.D. Dissertation Sharif University of Technology Farshidi, Mohammad Hassan (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    The aim of this study was improvement of mechanical properties and grain refinem ent of aluminum 6061 alloy tubes by combining pre and post heat treatments with Tube Channel Pre ssing (TC P) as a new severe plastic deformation process. For this purpose , the effect of geometr i cal parameters of TCP on deformation behavior was studied at first. Then , the effect of pre and post heat treatments on mechanical properties improvement and micro structure was invest i gated. Finally, the effect of TCP process on mechanical properties improvement and grain refinement was considered. Results show that the mandrel design must follow die design in TCP. As an illustration ,... 

    Investigation of Manganese Addition on Microstructure and Mechanical properties of Al-20Si-5Fe-3Cu-1Mg Ribbons Prepared by Melt Spinning Method

    , M.Sc. Thesis Sharif University of Technology Hosseini Jafari, Sahar (Author) ; Davami, Parviz (Supervisor) ; Varahram, Nasser (Supervisor)
    Abstract
    In this research, Al-20Si-5Fe-1Mg-xMn(x= 0,3,6) ribbons were produced by Melt spinning method. Microstructure and growth morphology of ribbons were studied by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results were compared with as cast samples. In OM results, two different zones were observed. Featureless zone (with planar growth morphology) and dendrites zone. Microstructure of ribbons were completely different from the as cast samples. It consisted of just Aluminium and silicon. XRD results approved that matter. In fact, high solidification rate of ribbons increased the solubility of silicon and other alloys in aluminium and consequently... 

    Effect of Martensite Volume Fraction on Fatigue Properties of Ferrite- Bainite- Martensite Triple Phase Steel

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The introduction of multi phase steels in recent years resulted in a considerable increase in development of some industries such as automobiles. By inducing soft and hard phases together, these steels could bring better mechanical properties than classical ones. Recent studies on 4340 ferritic- bainitic and ferritic- martensitic dual phase steels, indicate that 34 volume percent ferrite with hard phase, has the best combination of strength, toughness and fatigue properties. In present research, by proper heat treatment on a 4340 steel, it is tried to prepare specimens ferritic- bainitic- martensitic triple phase steels with 34 volume percent of ferrite and different percents of martensite.... 

    The Effect of Rolling on the Mechanical Properties and Microstructure of Dissimilar Friction Stir Welded AA1050 – AA6082-T6 Sheets

    , M.Sc. Thesis Sharif University of Technology Hoseyni, Sajad (Author) ; Kokabi, Amir Hossein (Supervisor) ; Kazeminezhad, Mohsen (Co-Advisor)
    Abstract
    One of the limitations of friction stir welding process is joining of sheets with low thickness. Interference ways for these limitations are joint in higher thicknesses and thickness reduction in included joint samples. In this study, in the first process, with the optimization of the variables affecting the process, joint was performed using visual inspection, mechanical properties and micro structural studies. In the next process, using the rolling operation for the reduction percent of different thicknesses, the most appropriate route was chosen. 1050 aluminum sheets (1050 and 6082-T6) with a thickness of 3 mm were welded using friction stir welding in tool rotary speeds of 1200 and 800... 

    Friction Stir Welding of 3000 Series Aluminum Alloy by Adding Cu Powder

    , M.Sc. Thesis Sharif University of Technology Abnar, Behrouz (Author) ; Kokabi, Amir Hossein (Supervisor) ; Kazeminezhad, Mohsen (Co-Advisor)
    Abstract
    An increase in strength of friction stir welded (FSW) AA3003-H18 sheets is important, due to the reduction of mechanical properties in weld area such as heat affected zone and stir zone during welding. In this research, at first FSW was used to join 3003-H18 non-heat-treatable aluminum plates without adding copper powder. The specimens were joined at various rotational speeds (800, 1000 and 1200 rpm) and traverse speeds (40, 70 and 100 mm/min). In these cases, the effects of welding parameters on microstructure and mechanical properties were investigated. The average grain size of stir zone was in the range of 21.7-7.8 μm and the microhardness of them was 28-37 Hv. Then FSW was used to join... 

    Simulation of Concrete Meso-Structure Within FEM/CDM Framework

    , M.Sc. Thesis Sharif University of Technology Yghoobi, Mohammad Reza (Author) ; Vafai, Abolhassan (Supervisor) ; Shahbeyk, Sharif (Supervisor)
    Abstract
    Various theoretical studies have been developed to obtain a deeper understanding of concrete behavior lead to the concrete constitutive models in the macroscale. In these models, however, the microstructure of the concrete and its effects on the concrete behavior has not been taken into account.Several numerical approaches have been incorporated to determine the effects of concrete mesostructure on the overall behavior of concrete. They may be classified at least in three main groups. In the first group, Continuum finite element methods (FEM) equipped with interface elements is incorporated. Second group is to incorporate more efficient elements, such as lattice or truss elements, instead of... 

    Effect of TLP Bonding on Microstructure and Thermal Fatigue Properties of Co-Based FSX-414 Superalloy

    , Ph.D. Dissertation Sharif University of Technology Bakhtiari, Reza (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In this research, transient liquid phase (TLP) bonding of FSX-414 superalloy was investigated using MBF-80 interlayer. The bonding was performed at different temperatures (1050-1200oC) for various times (1-120min). Also, different gap sizes were studied using the interlayer with various thicknesses (25-100µm). Homogenizing treatment was performed at different temperatures (1175-1225oC) and times (1-6h) for the samples with complete isothermal solidification. The microstructure of the samples were studied using the optical, scanning electron and transmission electron microscopes. Also, XRD, SEM/EDS, SEM/WDS and TEM/EDS analyses were used to analyse the observed phases at the joints. To... 

    Investigation of MoSi2/MoSi2 Joining

    , M.Sc. Thesis Sharif University of Technology Hatami Ramshehm Hamid Reza (Author) ; Kokabi, Amir Hossein (Supervisor) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    The present work investigates joining of two MoSi2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Ag-Cu alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged at 800-930°C while the operation lasted for 1hr. Interfacial microstructure was studied by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD) techniques. Applying the temperature of 830°C was led to uniform dense joint consisting of various reaction phases with excellent bonding within interfaces. Diffusion of Si to the liquid phase will transform MoSi2 to Mo5Si3 which bears Ag to some... 

    , M.Sc. Thesis Sharif University of Technology Rafiei, Alieh (Author) ; Varahram, Naser (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    Al-20Si-5Fe-3Cu-1Mg–xCr (X=0, X=1.5) ribbons were produced by melt-spinning technique at the rotating speed of 20 and 40 ms-1. The thickness of ribbons were 40 to 80 and 15 to 35 μm, respectively. The properties of as-melt spun and as-cast specimen were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-Ray diffractometry (XRD) and the microhardness method. It was found that at the air side of ribbons the microstructure was dendritic while at the wheel side it was featureless. The microstructure of ribbons at two rotating speed showed a homogenous distribution of Si particles embedded in an α-Al matrix. XRD investigations exhibited the absence of any intermetallic... 

    Study of Microstructure, Strengthening Mechanisms and Hot Deformation Behavior of Ultrafine-grained Al6063- Al203 Nanocomposites

    , Ph.D. Dissertation Sharif University of Technology Asgharzadeh, Hamed (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    In this study, Al6063-Al203 nanocomposite powders were synthesized by reaction mechanical milling method. Nanometric reinforcement particles were formed via high- energy ball milling under a controlled oxygen containing atmosphere. Morphological and microstructural evolutions of nanocomposite powders were investigated by using X-ray diffraction (XRD), thermal analysis (DTA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods at different milling times. The results showed that mechanical milling stages were accelerated and the time for reaching steady- state condition was decreased by an increase in the oxygen content in the milling atmosphere. The in-situ...