Loading...
Search for:
nanocarrier
0.083 seconds
Synthesis of Magnetic Fe3o4 Nanoparticle and Coating It with Modified Starch for Targeted Delivery of Doxorubicin Anticancer Drug
, M.Sc. Thesis Sharif University of Technology ; Pourjavadi, Ali (Supervisor)
Abstract
One of the major problems in cancer treatment is side effects of treatments. Today, scientists have developed smart nanocarrier for diagnosis and drug delivery that can circulate in the bloodstream, pass the body's immune system to kill cancer cells and attach to the cancer cells to deliver drugs, without the side effects that are in other treatments, such as chemotherapy. magnetic nanoparticles coated by biodegradable polymers are one of the smart polymers. In this study, iron oxide nanoparticles with amine group on their surface are coated by starch modified by methyl acrylate then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the...
Design of Drug Nanocarriers Based on Mesoporous Silica Nanoparticles Coated with Smart Polymers
, Ph.D. Dissertation Sharif University of Technology ; Pourjavadi, Ali (Supervisor)
Abstract
Mesoporous silica nanoparticles have broad application in drud delivery systems due to their porous structure, functionalization, biocompatibility, high surface area and pore volume. Neverthless, pure mesoporous silica nanoparticles without functionality were not smart material and could not release drug in triggered and controlled manner. For this reason, using smart polymeric coating would be considered. Polymer shells also provide colloidal stability, improved blood circulation lifetime and reduced toxicity which are crucial for efficient in vivo drug delivery. Inflammatory and tumor tissue have low pH and high temperature as compared to health tissue. Therefore, using pH and...
Loading of Drug and Nanostructured Coating on Dental Implant
, M.Sc. Thesis Sharif University of Technology ; Sadrnezhaad, Khatiboleslam (Supervisor)
Abstract
The aim of this project is to load analgesic drug; Paracetamol on dental implant. The implant is titanium alloy (Ti-6Al-4V). There are two kinds of samples of anodized and HA coated onto anodized. They are in the shape of the sheets in this study. The electrodeposition and anodization carried out in order to treat the two samples. Nanotubes were formed during anodic oxidation of the samples in the 1M Ammonium sulfate (NH₄)₂SO4 and 5wt% Ammonium fluoride NH4F electrolyte. They are expected to play role of carrier for the model drug; paracetamol. The results showed that HA anodized Ti-6-4 has the ability to hold higher amounts of drug and also can keep the drug for a longer time than the...
Design and Fabrication of Drug-loaded Nanoparticles to Prevent Fibrillation of Alpha-synuclein in Parkinson
, M.Sc. Thesis Sharif University of Technology ; Mashayekhan, Shohreh (Supervisor) ; Morshedi, Dina (Supervisor)
Abstract
The purpose of this study is to assess the inhibitory effects of an appropriate nanoparticles loaded with gallic acid on the fibrillation of alpha-synuclein. Alpha-synuclein is a major component of protein plaques in synucleinopathies, particularly Parkinson’s disease. Gallic acid (GA, 3,4,5-trihydroxy benzoic acid) is a well–known small molecule which can inhibit the formation of α-synuclein fibrils. For the process of fibrillation, purified protein was incubated at 37◦C and pH 7.2. Fibrillation was analyzed by the standard fibril methods.after that investigated fabricating of gallic acid trapped in the chitosan nanoparticles and gallic acid loaded in chitosan –coated mesoporous silica...
Loading of Doxorubicin on Stimuli-Responsive Nanocarriers and Investigation of its Release
, M.Sc. Thesis Sharif University of Technology ; Pourjavadi, Ali (Supervisor)
Abstract
Drug targeting to specific organs and tissues has become one of the critical endeavors of the new century. Magnetic nanoparticles have gained a lot of attention in biomedical and industrial application. Doxorubicin is an effective anti-cancer drug in the treatment of many types of cancers. The aim of this study is to load doxorubicin on stimuli-responsive nanocarriers. These nanocarriers are prepared from magnetic nanoparticles. Then these magnetic nanparticles are coated by copolymer of poly(glycidyl methacrylate) then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the anticancer drug doxorubicin via a hydrazone bond formation. This...
Investigating the Effect of Geometric Shape and Properties of Protein Corona on Drug Release Using Finite Element Method
, M.Sc. Thesis Sharif University of Technology ; Naghdabadi, Reza (Supervisor)
Abstract
In novel drug delivery systems, once nanocarriers confront the biological milieu, their surface is rapidly covered with a layer of biomolecules (i.e., “protein corona”) which play an important role in their drug release rate. Various experimental studies have been done to elucidate the effect of nanoparticles properties on the drug release rate in different biological applications. The physical and geometrical properties of protein corona totally influence on the release profile. In this study, we proposed a suitable finite element model which contains the nanoparticles and the protein layer with their properties in the biological milieu. To this end, diffusion parameters including diffusion...
Design of Oxidative Stress Nanoparticles for Targeted drug Delivery to the Posterior Segment of the Eye and Breast Cancer
, Ph.D. Dissertation Sharif University of Technology ; Abdekhodaei, Mohammad Jafar (Supervisor) ; Baharvand, Hossein (Supervisor) ; Satarian, Leila ($item.subfieldsMap.e) ; Sadeghi, Hamid ($item.subfieldsMap.e)
Abstract
The oxidation-reduction (redox) responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. Resulting in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as redox-sensitive linkage, was designed, so it is located at the hydrophilic/hydrophobic hinge to allow complete micelles collapse and efficient drug release, in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations above the critical micelle concentration (CMC) in an aqueous environment. Dynamic light...