Loading...
Search for:
nanocomposite
0.182 seconds
Total 154 records
Investigation of Mechanical Milling Effects on Al-Cu and Al-CuO Powder Mixture Morphological and Structural Characteristic and Mechanical Properties Changes Resultant from Age Hardening
, M.Sc. Thesis Sharif University of Technology ; Simchi, Abdolreza (Supervisor)
Abstract
In the present work, nanocrystalline Al-4wt%Cu alloy reinforced with nanometric Al2O3 particles was synthesized by in-situ reactive milling of Al and CuO powder mixture and hot extrusion. The effect of nanometric Al2O3 particles on the aging behavior and mechanical properties of this alloy was investigated. During mechanical milling, copper oxide were reduced and dissolved in the aluminum lattice. consequently, Al(Cu) solid solution matrix was produced. Also, nanometric Al2O3 particles were also distributed in the matrix uniformly. The powder blend was then pressed in an Al can at 100 MPa pressure and subsequently extruded at 450 0C at the extrusion ratio of 16:1. The density of the...
Investigation of Production Increasing in In-situ Preparation of Polyolefin/clay Nanocomposites
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadat Abadi, Ahmad (Supervisor)
Abstract
This project is devoted to experimental investigation of increasing on production of polyethylene/clay nanocomposites (PECNs) and polypropylene/clay nanocomposites (PPCNs) via in-situ polymerization method. First of all we produced bi-supported Ziegler-Natta catalyst to polymerized polyolefins nanocomposites. Bentonite type clay and Magnesiumethoxide (Mg (OEt)2) were used as the support of Tetrachloridetitanium (TiCl4). Catalyst support and polymerization process have been done in slurry phase using Triisobutylaluminum (TiBA) as the co-catalyst. The efficiency of preapared bi-supported Ziegler-Natta was reasonably high (average 200 (gr. Product/mmol Ti. h) for PECNs and 195 (gr. Product/mmol...
, M.Sc. Thesis Sharif University of Technology ; Dolati, Abolghasem (Supervisor)
Abstract
Electrodeposition of composite coatings containing nano particles is very important because this technique is simple and economic. In this research, in order to produce a coating with high hardness and wear resistance, Ni-Co/WC nano composite was co-deposited. Watt’s based bath containing cobalt and tungsten carbide was used and parameters such as preparation of solution, concentration of ingredients and current density were controlled and adjusted. Surface morphology, microstructure and mechanical properties of coatings were studied by SEM and AFM microscopes. Mechanism of electrodeposition was investigated by cyclic voltametry, cronoamperometry and cronopotentiometry techniques and...
, M.Sc. Thesis Sharif University of Technology ; Pourjavadi, Ali (Supervisor) ; Zohurian Mehr, Mohammad Jalal (Supervisor)
Abstract
Polyampholyte hydrogels are hydrophilic networks that contain both positively- and negatively-charged functional groups on their structure. Polysulfobetaines are the most important type of polyampholytes, which have been extensively studied. However, these hydrogels exhibited poor gel strength causing limitation of their applications. Consequently, much attention has been focused on the preparation of nanocomposite hydrogels with high gel strength and lower cost using organomodified clays. In this project, Novel polyampholytic superabsorbing nanocomposites based on the zwitterionic sulfobetaine monomer [3-(methacrylamido)propyl)]dimethyl(3-sulfopropyl) ammonium hydroxide (MPDSAH) were...
Hydroxyapaptite Coating on Zirconia Toughened Alumina Nanocomposite by Biomimetic Method
, M.Sc. Thesis Sharif University of Technology ; Nemati, Ali (Supervisor) ; Salahi, Esmaeil (Co-Advisor)
Abstract
Zirconia toughened alumina (ZTA) Nanocomposites were prepared using nano sized Zirconia (ZrO2) powders doped with 3% mol of yttria (Y2O3) nanopowders and the sintering behavior at different temperature (1450 °C, 1550 °C and 1650 °C) were studied. The ZTA composite with different amount of partially stabilized Zirconia (PSZ)(5, 10, 15 and 20% mol) were prepared via axial pressing and then sintered to achieve maximum densification. After that phase changes of the samples were monitored. SEM was used for microstructural study and hardness and fracture toughness were determined by means of Vickers indentation. X-ray diffraction pattern showed that at constant composition, tetragonal zirconia...
Preparation and Investigation of Behavior of Silica Nano Composites with TPU/PP
, M.Sc. Thesis Sharif University of Technology ; Ramazani Saadatabadi, Ahmand (Supervisor)
Abstract
Blending can be used as one of the ways of producing materials with appropriate properties, which have many relative advantages in comparison with other methods like polymerization. Among the existing blends in the market and scientific areas, blends of polyurethane thermoplastic and polypropylene have been also studied because of its commercial importance and scientific interest. This blending can improve the mechanical properties, friction resistance, improvement of impact strength at low temperatures and improvement of plasticity properties. In this research, blends with different ratios of TPU/PP is produced by melt mixing, and for improving properties of blends, two kinds of nano fumed ...
The Synthesis of Iron Aluminide Nano Composite/Alumina by in Situ Procedure Based on Mechanical Alloying and Surveying Some of its Mechanical Characteristics
, M.Sc. Thesis Sharif University of Technology ; Purazaang, Kazem (Supervisor) ; Salahi, Esmail (Supervisor)
Abstract
In this study, first nano structure powders of Fe3AL / Al2o3 by different percentages of reinforcement phases (10, 20 and 50 percent of volume) based on mechanical milling procedure was created. To do so, iron, Al and iron oxide (hematite) pure powder based on special weight percentages mixed with each other and milled in 20 to 100 hour periods based on two different weights of ball toward powder: 10 and 20. Morphological variations, particles sizes and powder densities, lattice strain and phase variations in different timing periods of mechanical milling process was studied by Scanning Electron Microscopy(SEM) , analyzing apparatus of particles sizes by laser , gaseous picnometer and X-ray...
Evaluation of The Effect of Molecular Weight, Mixing Approach and Compatibilizer on Morphologhy and Mechanical Properties of PP/PA/Clay Nanocomposite
,
M.Sc. Thesis
Sharif University of Technology
;
Bagheri, Reza
(Supervisor)
Abstract
Polypropylene/clay nanocomposites are considered as a group of widely used nanocomposites in industrial applications due to their desired properties, yet reasonable cost. However, dissimmilar chemical nature of polypropylene and clay do not allow perfect dispersion of silicate layeres in the matrix and thus restricts full advantages of these composites.An earlier investigation in this group considered solving this shortcoming through incorporation of PA6 as an intermediate phase to enhance clay platelets dispersion. The current project follows this route via studing the influence of molecular weight of the PP matrix, compatibilzer and the mixing procedure of the compound. To investigate the...
Properties of Radiation Induced LDPE/EVA Nanocomposits
, M.Sc. Thesis Sharif University of Technology ; Shojaei, Akbar (Supervisor) ; Sheikh, Nasrin (Supervisor)
Abstract
Polyethylene (PE) is used as an insulation material for wires and cables because of its excellent electrical properties. For such application, it can be exposed to the high energy irradiation such as gamma ray and electron beam (EB), making possible crosslinking of the PE. Most of the properties of PE are improved greatly after irradiation, but it was harden and split easily. Due to the flexibility of EVA, depending on the vinyl acetate content, it can improve the toughness of the LDPE significantly upon addition to this polymer. As a result, radiation induced LDPE/EVA blend has been a good candidate for the wire and cable insulation. Also, upon addition of a few amount of OC, different...
Electrodeposition of Ni-Co/SiC Composite Coatings
, M.Sc. Thesis Sharif University of Technology ; Dolati, Abolghasem (Supervisor)
Abstract
Ni-Co/SiC composite coatings with various contents of SiC nano particles were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC nano particles to be codeposited. The influences of the SiC concentration, current density, stirring rate of the deposition bath on the composition of the coatings were investigated and these parameters optimized for highest amount of SiC codeposition. The optimized deposition parameters were 40 g/l SiC and 480 rpm stirring rate and current density equal to 4 A/dm2. Ni-Co/SiC composite coating was deposited with the maximum particles content of 30.5 volume percent. Linear voltammetry demonstrates addition of the SiC to the Ni-Co deposition...
Investigation Hydrogen Properties of Nano Composite MgH2-Ti Cr1.2Fe0.6 Nano Crystalline Synthesized by Mechanical Alloying and Vacuum Arc Re-Melting(VAR)
,
M.Sc. Thesis
Sharif University of Technology
;
Simchi, Abdol Reza
(Supervisor)
Abstract
In this research, nano composite MgH2-TiCr1.2 Fe0.6 nano crystalline was synthesized by mechanical alloying and Vacuum arc re-melting (VAR). the effect of Milling conditions and adding nano crystalline TiCr1.2 Fe0.6 as a catalyst on the structure and hydrogen desorption properties of MgH2 were studied. MgH2 powder grain size after 4 hours milling gained to 15nm and strain network reached to 0.8%. Determined that the increasing of accumulated lattice strain because of mechanical milling combined with adding nano crystalline alloy TiCr1.2 Fe0.6 significantly improve the properties of MgH2 hydrogen desorption. After an hour mill working, high pressure phase of γ-MgH2 was appeared in...
Multiscale Nonlinear Finite Element Analysis of Nanostructured Materials Based on Equivalent Continuum Mechanics
, Ph.D. Dissertation Sharif University of Technology ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
Abstract
Nanostructured materials are a new kind of engineering materials which attracted researchers’ interest because of their interesting mechanical /physical properties, as well as controllable microstructural design ability for desired applications. These new materials are homogeneous at the macroscale but at the microstructural level, may have heterogeneities including common nanostructures. Because of multiscale nature of these materials, new multiscale methods should be developed and used for better understanding the behavior of them. Multiscale methods could be categorized into concurrent and hierarchical methods. In concurrent methods, the domain under study is explicitly divided into...
The Investigation of Additive Elements Ti, Cr on Structure and Some Mechanical Properties of Micro and Nano Composites of Iron Aluminide/Alumina
, M.Sc. Thesis Sharif University of Technology ; Abachi, Parvin (Supervisor) ; Salahi, Esmaeil (Supervisor)
Abstract
In this experiment, first the Fe and Al powders with atomic ratio of 25 and 75 were mixed by mechanical alloying process. After obtaining the optimum conditions of milling, nano structural Fe3Al powder was synthesized by 40 hours alloying with a Ball to Powder Ratio (BPR) of 20:1. The synthesized powder was then milled with different weight ratios of titanium and Cr for 30 hours. Morphological changes, size of powder particles, lattice strain, grain size and phase transitions were studied for different powders in different time spans during milling process by means of scanning electron microscopy, X-ray diffraction and grain size analyzer. The smallest grain size gained for milled powder...
“Production of Micro and Nanocomposites of Fe3Al/ZrO2 Via Mechanical Alloying and Surveying of Mechanical Properties”
, M.Sc. Thesis Sharif University of Technology ; Pourazarang, Kazem (Supervisor) ; Salahi, Esmail (Supervisor)
Abstract
In this investigation, nanostructure Fe3Al was produced by mechanical milling initially. Pure iron and aluminum powders were milled with suitable ratio 86Fe-14Al by weight. Milling was done up to 120 h times and with BPR 10 and BPR 20. Morphological changes, powder density and size, phase and structural changes, grain size and lattice strain were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and laser particle size analyzer (LPSA). 40 h mechanical alloying with BPR 20 led to the corresponding intermetallic compound, Fe3Al with a nanocrystalline structure. Therefore Fe3Al/ZrO2 micro and nanocomposite powders were synthesized with manufactured by milling of...
, M.Sc. Thesis Sharif University of Technology ; Moshfegh, Alireza (Supervisor)
Abstract
ZnO is a wide and direct band gap (3.37 eV) semiconducting material with a large exciton binding energy (60 meV). It has been extensively studied in the last few years owing to its potential applications in various fields such as surface acoustic wave devices (SAW), transparent electrode, solar cell windows, photovoltaic devices, gas sensors and photoelectrochemical cells. Recently, much attention has been paid to rare-earth (RE) doped ZnO for possible applications in visible emitting phosphors in displays, high power lasers, and other optoelectronic devices. In this thesis, initially ZnO thin films were deposited on glass and ITO substrates using sol-gel dip-coating method. Optical and...
Synthesis of Mg / MgO - Mg2Cu by in-situ Reaction Method and Investigation on Structure and Mechanical Properties
, M.Sc. Thesis Sharif University of Technology ; Abachi, Parvin (Supervisor) ; Salahi, Esmaeil (Supervisor) ; Pour Azarang, Kazem (Co-Advisor)
Abstract
In this project formation of MgO & Mg2Cu reinforcement particle in Magnesium matrix was investigated. Firstly Mg & CuO powders mixture in different weight percentage (4, 8%wt CuO) in 20:1 and 30:1 BPR were milled. Finally, according to XRD result 30:1 BPR was selected for milling. Variations in powders morphology, particles size, crystallite size, lattice strain and phase transformation were investigated by X-ray diffraction, scanning electron microscopy and laser particle size analyzer in different milling time. Result showed that during reaction between Mg and CuO, MgO & Mg2Cu reinforcement particles were formed in matrix. Matrix crystallite size was determined about 35-40 nm. Mg-6.3%wt Cu...
Characterization of Nanohydroxyapatite-Carbon Nanotube on Stainless Steel 316L Produced by Sol-Gel Method
, M.Sc. Thesis Sharif University of Technology ; Nemati, Ali (Supervisor) ; Sadeghian, Zahra (Supervisor)
Abstract
In this investigation, hydroxyapatite-carbon nanotube nano composite coatings were applied on the 316L stainless steel implants. After polishing with 1200 sand paper, stainless steel implants were coated via dip coating method. The specimens were heat treated at 350˚C after being coated with HAP and HAP-CNTs composite. In vitro test was done in simulated body fluid (SBF) in 1 to 4 weeks periods. XRD evaluation of powder obtained from sol-gel process, showed the presence of HAP and CNTs in the powders. Comparison of XRD results of HAP and HAP-CNTs powders showed the better crystalinity of composite hydroxyapatite. After in vitro tests, specimens were studied with atomic force microscope (AFM)...
Mechanical Behavior Analysis of Carbon Nanotube-Based Polymer Composites using Multiscale Modeling
, Ph.D. Dissertation Sharif University of Technology ; Naghdabadi, Reza (Supervisor) ; Rafii Tabar, Hashem (Supervisor) ; Bagheri, Reza (Supervisor)
Abstract
In this project, two multiscale modeling procedures have been implemented to study the mechanical behavior of SWCNT/polymer composites. First, a new three-phase molecular structural mechanics/ finite element (MSM/FE) multiscale model has been introduced which consists of three components, i.e. a carbon nanotube, an interphase layer and outer polymer matrix. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. Using this model, we have investigated the macroscopic material properties of nanocomposite with and without considering the interphase and compared the results with molecular dynamics (MD) simulations....
The Fabrication of Copper base Chromium Oxide Reinforced Nanocomposite and Investigation of its Mechanical and Physical Properties
, M.Sc. Thesis Sharif University of Technology ; Pourazarang, Kazem (Supervisor) ; Abachi, Parvin (Supervisor)
Abstract
It is well known that Cu/Al2O3 nanocomposites have high potential for use in structural, electrical applications which enhanced mechanical characteristics are required. In the present work, in order to improve the in-situ oxidation kinetic of solute element, chromium was used instead of aluminum. At the initial stage, elemental Cu and Cr powders were mechanically alloyed for 60h under argon atmosphere. It was followed by mechanically milling of Cu-Cr pre-alloyed and Cu2O powders. The nanocomposite specimens, containing different amounts of Cr2O3, depending on the Cr content in the range of 1-3 wt. %, were produced by in-situ oxidation of Cu-Cr pre-alloyed powders. To prevent oxidation of...
An Investigation on Physical and Photochemical Properties of Sol-Gel Derived MWCNT-WO3 Nanocomposite thin Films
, M.Sc. Thesis Sharif University of Technology ; Moshfegh, Alireza (Supervisor)
Abstract
WO3 have good electrochromic, gas sensor, photocatalyst, phoelectrochemical (PEC) properties. due its properties, tungsten oxide have many application in technology and industry. In this thesis, pure WO3 thin film and MWCNT-WO3 nanocomposite thin films with different weight percent of MWCNT/WO3 utilize for energy domain, particular hydrogen production with phoelectrochemical reactions spiliting water. For this purpose, initially WO3 thin films were deposited on glass and ITO substrates using sol-gel dip-coating method. Optical and surface properties of the films dried at 100ºC and annealed at 400 ºC had been investigated. UV-Visible spectrophotometer, atomic force microscopy (AFM), X-ray...