Loading...
Search for:
nanomedicine
0.061 seconds
Synthesis and Evaluation of Supramolecular Nanostrutures of Cyclodextrin/Polyglycerol with Controlled Drug Delivery Applications
, Ph.D. Dissertation Sharif University of Technology ; Vossoughi, Manouchehr (Supervisor) ; Adeli, Mohsen (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor)
Abstract
Today, human is facing and struggling with one of the most deadly disease, Cancer. Accordingly, several research studies are aimed to develop new anticancer drugs. Among the prescribed drugs are Paclitaxel. Unfortunately, despite the anticancer activity, paclitaxel has very low water solubility. To solve this problem several alternatives have been proposed by researchers, e.g. using co-solvents of ethanol:Cremophor El®, as is the case in commercial drug, Taxol®. Unfortunately, these co-solvents have some dangerous and sometimes mortal side effects. To reduce its side effects, researchers have proposed using cyclodextrin as a carrier for paclitaxel on the basis that cyclodextrin has a...
Synthesis of Graphene Oxide Coating with Hydrophilic Polymers as Paclitaxel Anticancer Drug Delivery Systems
, M.Sc. Thesis Sharif University of Technology ; Adeli, Mohsen (Supervisor) ; Poujavadi, Ali (Co-Advisor)
Abstract
Nowadays, there is no perfect drug delivery for cancer therapy; also the healthy tissues can be damaged more than tumor tissues. To resolve this problem, the new drug delivery system based on nanostructured materials is useful. Graphene oxide (GO) is one of the most important graphene derivatives and a potential candidate for drug delivery system. It has high specific surface area so that it can load and deliver the drug in a good manner. Hydrophobicity of graphene restricts its application in nanomedicine. In order to improve its solubility in water, graphene should be modified by hydrophilic polymers. Therefore, in this study, in order to activate the graphene surface and increase its...
Mechanism Investigation of Metallic Nanoparticles Interaction with Biological Molecules using Molecular Dynamic Simulation
, M.Sc. Thesis Sharif University of Technology ; Gholami, Mohammad Reza (Supervisor)
Abstract
Amyloid β (Aβ) peptide is believed to be associated with the progression of Alzheimer's disease. One of the main obstacles in developments of therapeutic agents to combat progression of Alzheimer's disease, is the presence of the blood–brain barrier (BBB), which prevents the penetration of the majority of drugs. However, nanoscale objects are able to cross the BBB at low concentrations. Therefore, it is worthwhile to study the interactions of these peptides at the interface of nanomaterials. In this work we have employed molecular dynamics, and weighted histogram analysis methods in order to study the dynamic behavior and affinity of Aβ25-35 peptide on metallic surfaces of different...