Loading...
Search for:
q-eigenvalue
0.064 seconds
Signless Laplacian Spectra of Graphs
, M.Sc. Thesis Sharif University of Technology ; Akbari, Saeed (Supervisor)
Abstract
Let G be a graph of order n. The signless Laplacian matrix or Q-matrix of G is Q(G)=D(G)+A(G), where A(G) is the adjacency matrix of G and D(G) is diagonal degree matrix of G. The signless Laplacian characteristic polynomial or Q-polinomial of G is QG(x)=det(xI-Q(G)) and its roots are called signless Laplacian eigenvalues or Q-eigenvalues of G. If R is vertex-degree incidence matrix of G, then Q(G)=RRt. So Q(G) is a positive semi-definite matrix, i.e. its eigenvalues are none-negative. Let q1(G)≥q2(G)≥…≥qn(G) denote the signless Laplacian eigenvalues of G. A theory in which graphs are studied by means of eigenvalues of Q(G) is called signless Laplaciian theory or Q-theory.In this research,...