Please enable javascript in your browser.
Page
of
0
مدل سازی و تحلیل مسائل رشد ترک با استفاده از روش هم هندسه
اسماعیلی، میرسردار Esmaeili, Mir Sardar
Cataloging brief
مدل سازی و تحلیل مسائل رشد ترک با استفاده از روش هم هندسه
پدیدآور اصلی :
اسماعیلی، میرسردار Esmaeili, Mir Sardar
ناشر :
صنعتی شریف
سال انتشار :
1391
موضوع ها :
مکانیک شکست Fracture Mechanics رشد ترک Crack Growth روش اجزای محدود بسط یافته Extended...
شماره راهنما :
53-43489
Find in content
sort by
page number
page score
Bookmark
Chapter 1 Introduction
(13)
1.1 Isogeometric Analysis
(13)
1.2 Fracture mechanics and eXtended Finite Element Method
(13)
1.3 eXtended Isogeometric Analysis (XIGA)
(14)
Chapter 2 Introduction to Isogeometric Analysis
(15)
2.1 Isogeometric Analysis Method
(15)
2.1.1 Computational Geometry
(18)
2.2 Basic Terminologies
(18)
2.3 B-splines
(21)
2.3.1 Knot vector
(22)
2.3.2 Basis Functions
(24)
2.3.3 Derivatives of B-spline basis functions
(28)
2.3.4 B-spline geometries
(29)
2.3.4.1 B-spline curves
(29)
2.3.4.2 B-spline surfaces
(31)
2.3.4.3 B-spline solids
(33)
2.3.5 Refinement
(34)
2.3.5.1 Knot insertion
(34)
2.3.5.2 Order Elevation
(37)
2.4 Non-Uniform Rational B-Splines (NURBS)
(40)
2.5 NURBS drawbacks
(41)
2.5.1 Local refinement
(41)
2.5.2 Patch Assembly
(42)
2.6 T-splines
(43)
2.6.1 PB-Splines
(43)
2.6.2 Defining T-splines
(45)
2.6.2.1 Anchors and T-mesh
(45)
2.6.2.2 Building a T-spline
(47)
2.7 Isoparametric concept
(47)
2.8 Obtaining weak form of BVPs
(49)
2.9 Similarities and differences for Isogeometric analysis and Finite element analysis
(50)
Chapter 3 Discretization and Linear Elasticity Problems
(52)
3.1 Formulating the equation
(52)
3.1.1 Strong form of BVP
(53)
3.1.2 Weak Form of Equilibrium equation
(54)
3.1.2.1 Galerkin’s method
(55)
3.2 One Dimensional Poisson’s Equation
(58)
3.3 Infinite plate with circular hole under constant in-plane tension
(63)
Chapter 4 Fracture Mechanics, A review
(67)
4.1 Historical perspective
(67)
4.2 Westergaard analysis of a sharp crack
(69)
4.3 Stress Intensity Factor (SIFs)
(70)
4.4 Griffith theory of strength
(74)
4.5 Brittle Materials
(75)
4.6 Mixed mode crack propagation
(77)
4.7 J-integral method for calculation of SIFs
(78)
4.8 Some numerical method based on J-integral method
(81)
4.8.1 Equivalent domain integral method
(81)
Li et al [23] proposed the equivalent domain integral method as an alternative approach, which requires only one analysis. According to Fig. 2.17b, the J integral can be defined as ( [23,24]):
(81)
4.8.2 Interaction integral method
(82)
Chapter 5 Extended finite element method
(84)
5.1 A review of XFEM development
(84)
5.2 Basics of XFEM
(86)
5.2.1 Partition of unity
(86)
5.2.2 Enrichment
(87)
5.2.2.1 Intrinsic enrichment
(88)
5.2.2.2 Extrinsic enrichment
(90)
5.3 Enrichment in extended finite element method
(91)
5.3.1 The Heaviside function
(93)
5.3.2 Asymptotic functions
(94)
5.4 XFEM discretization
(95)
5.5 Element integration
(97)
Chapter 6 Extended isogeometric analysis for modeling crack growth problems
(100)
6.1 Introduction
(100)
6.2 Need for XIGA
(100)
6.3 Enrichment in XIGA
(102)
6.4 Numerical examples
(103)
6.4.1 A rectangular plate with an edge crack
(103)
6.4.2 An infinite plate with a middle crack under uniform uniaxial in-plane tension
(107)
6.4.3 Propagating crack through a T-spline patch of plate with a middle crack under uniform in-plane tension
(110)
6.4.4 A plate with two circular holes and two edge crack under displacement control state
(116)
Chapter 7 Conclusion and future works
(120)
7.1 Conclusion
(120)
7.2 Future works
(121)